Cargando…
A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction
BACKGROUND: Molecular structures can be represented as strings of special characters using SMILES. Since each molecule is represented as a string, the similarity between compounds can be computed using SMILES-based string similarity functions. Most previous studies on drug-target interaction predict...
Autores principales: | Öztürk, Hakime, Ozkirimli, Elif, Özgür, Arzucan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797122/ https://www.ncbi.nlm.nih.gov/pubmed/26987649 http://dx.doi.org/10.1186/s12859-016-0977-x |
Ejemplares similares
-
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018) -
A novel methodology on distributed representations of proteins using their interacting ligands
por: Öztürk, Hakime, et al.
Publicado: (2018) -
Classification of Beta-Lactamases and Penicillin Binding Proteins Using Ligand-Centric Network Models
por: Öztürk, Hakime, et al.
Publicado: (2015) -
BIOSSES: a semantic sentence similarity estimation system for the biomedical domain
por: Soğancıoğlu, Gizem, et al.
Publicado: (2017) -
Editorial: Machine Learning Methodologies to Study Molecular Interactions
por: Yakimovich, Artur, et al.
Publicado: (2021)