Cargando…

The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs

ComA-like transcription factors regulate the quorum response in numerous Gram-positive bacteria. ComA proteins belong to the tetrahelical helix-turn-helix superfamily of transcriptional activators, which bind as homodimers to inverted sequence repeats in the DNA. Here, we report that ComA from Bacil...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolf, Diana, Rippa, Valentina, Mobarec, Juan Carlos, Sauer, Patricia, Adlung, Lorenz, Kolb, Peter, Bischofs, Ilka B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797271/
https://www.ncbi.nlm.nih.gov/pubmed/26582911
http://dx.doi.org/10.1093/nar/gkv1242
Descripción
Sumario:ComA-like transcription factors regulate the quorum response in numerous Gram-positive bacteria. ComA proteins belong to the tetrahelical helix-turn-helix superfamily of transcriptional activators, which bind as homodimers to inverted sequence repeats in the DNA. Here, we report that ComA from Bacillus subtilis recognizes a topologically distinct motif, in which the binding elements form a direct repeat. We provide in vitro and in vivo evidence that the canonical and non-canonical site play an important role in facilitating type I and type II promoter activation, respectively, by interacting with different subunits of RNA polymerase. We furthermore show that there is a variety of contexts in which the non-canonical site can occur and identify new direct target genes that are located within the integrative and conjugative element ICEBs1. We therefore suggest that ComA acts as a multifunctional transcriptional activator and provides a striking example for complexity in protein–DNA interactions that evolved in the context of quorum sensing.