Cargando…
Structural characterization of a dimer of RNA duplexes composed of 8-bromoguanosine modified CGG trinucleotide repeats: a novel architecture of RNA quadruplexes
Fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS) are neurodegenerative disorders caused by the pathogenic expansion of CGG triplet repeats in the FMR1 gene. FXTAS is likely to be caused by a ‘toxic’ gain-of-function of the FMR1 mRNA. We provide evidence for the existence of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797283/ https://www.ncbi.nlm.nih.gov/pubmed/26743003 http://dx.doi.org/10.1093/nar/gkv1534 |
Sumario: | Fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS) are neurodegenerative disorders caused by the pathogenic expansion of CGG triplet repeats in the FMR1 gene. FXTAS is likely to be caused by a ‘toxic’ gain-of-function of the FMR1 mRNA. We provide evidence for the existence of a novel quadruplex architecture comprising CGG repeats. The 8-bromoguanosine ((Br)G)-modified molecule GC(Br)GGCGGC forms a duplex in solution and self-associates via the major groove to form a four-stranded, antiparallel (GC(Br)GGCGGC)(4) RNA quadruplex with (Br)G3:G6:(Br)G3:G6 tetrads sandwiched between mixed G:C:G:C tetrads. Self-association of Watson–Crick duplexes to form a four-stranded structure has previously been predicted; however, no experimental evidence was provided. This novel four-stranded RNA structure was characterized using a variety of experimental methods, such as native gel electrophoresis, NMR spectroscopy, small-angle X-ray scattering and electrospray ionization mass spectrometry. |
---|