Cargando…
Pharmacokinetic modeling of [(18)F]fluorodeoxyglucose (FDG) for premature infants, and newborns through 5-year-olds
BACKGROUND: Absorbed dose estimates for pediatric patients require pharmacokinetics that are, to the extent possible, age-specific. Such age-specific pharmacokinetic data are lacking for many of the diagnostic agents typically used in pediatric imaging. We have developed a pharmacokinetic model of [...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797375/ https://www.ncbi.nlm.nih.gov/pubmed/26988861 http://dx.doi.org/10.1186/s13550-016-0179-6 |
_version_ | 1782421945194643456 |
---|---|
author | Khamwan, Kitiwat Plyku, Donika O’Reilly, Shannon E. Goodkind, Alison Cao, Xinhua Fahey, Frederic H. Treves, S. Ted Bolch, Wesley E. Sgouros, George |
author_facet | Khamwan, Kitiwat Plyku, Donika O’Reilly, Shannon E. Goodkind, Alison Cao, Xinhua Fahey, Frederic H. Treves, S. Ted Bolch, Wesley E. Sgouros, George |
author_sort | Khamwan, Kitiwat |
collection | PubMed |
description | BACKGROUND: Absorbed dose estimates for pediatric patients require pharmacokinetics that are, to the extent possible, age-specific. Such age-specific pharmacokinetic data are lacking for many of the diagnostic agents typically used in pediatric imaging. We have developed a pharmacokinetic model of [(18)F]fluorodeoxyglucose (FDG) applicable to premature infants and to 0- (newborns) to 5-year-old patients, which may be used to generate model-derived time-integrated activity coefficients and absorbed dose calculations for these patients. METHODS: The FDG compartmental model developed by Hays and Segall for adults was fitted to published data from infants and also to a retrospective data set collected at the Boston Children’s Hospital (BCH). The BCH data set was also used to examine the relationship between uptake of FDG in different organs and patient weight or age. RESULTS: Substantial changes in the structure of the FDG model were required to fit the pediatric data. Fitted rate constants and fractional blood volumes were reduced relative to the adult values. CONCLUSIONS: The pharmacokinetic models developed differ substantially from adult pharmacokinetic (PK) models which can have considerable impact on the dosimetric models for pediatric patients. This approach may be used as a model for estimating dosimetry in children from other radiopharmaceuticals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13550-016-0179-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4797375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-47973752016-07-06 Pharmacokinetic modeling of [(18)F]fluorodeoxyglucose (FDG) for premature infants, and newborns through 5-year-olds Khamwan, Kitiwat Plyku, Donika O’Reilly, Shannon E. Goodkind, Alison Cao, Xinhua Fahey, Frederic H. Treves, S. Ted Bolch, Wesley E. Sgouros, George EJNMMI Res Original Research BACKGROUND: Absorbed dose estimates for pediatric patients require pharmacokinetics that are, to the extent possible, age-specific. Such age-specific pharmacokinetic data are lacking for many of the diagnostic agents typically used in pediatric imaging. We have developed a pharmacokinetic model of [(18)F]fluorodeoxyglucose (FDG) applicable to premature infants and to 0- (newborns) to 5-year-old patients, which may be used to generate model-derived time-integrated activity coefficients and absorbed dose calculations for these patients. METHODS: The FDG compartmental model developed by Hays and Segall for adults was fitted to published data from infants and also to a retrospective data set collected at the Boston Children’s Hospital (BCH). The BCH data set was also used to examine the relationship between uptake of FDG in different organs and patient weight or age. RESULTS: Substantial changes in the structure of the FDG model were required to fit the pediatric data. Fitted rate constants and fractional blood volumes were reduced relative to the adult values. CONCLUSIONS: The pharmacokinetic models developed differ substantially from adult pharmacokinetic (PK) models which can have considerable impact on the dosimetric models for pediatric patients. This approach may be used as a model for estimating dosimetry in children from other radiopharmaceuticals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13550-016-0179-6) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2016-03-17 /pmc/articles/PMC4797375/ /pubmed/26988861 http://dx.doi.org/10.1186/s13550-016-0179-6 Text en © Khamwan et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Research Khamwan, Kitiwat Plyku, Donika O’Reilly, Shannon E. Goodkind, Alison Cao, Xinhua Fahey, Frederic H. Treves, S. Ted Bolch, Wesley E. Sgouros, George Pharmacokinetic modeling of [(18)F]fluorodeoxyglucose (FDG) for premature infants, and newborns through 5-year-olds |
title | Pharmacokinetic modeling of [(18)F]fluorodeoxyglucose (FDG) for premature infants, and newborns through 5-year-olds |
title_full | Pharmacokinetic modeling of [(18)F]fluorodeoxyglucose (FDG) for premature infants, and newborns through 5-year-olds |
title_fullStr | Pharmacokinetic modeling of [(18)F]fluorodeoxyglucose (FDG) for premature infants, and newborns through 5-year-olds |
title_full_unstemmed | Pharmacokinetic modeling of [(18)F]fluorodeoxyglucose (FDG) for premature infants, and newborns through 5-year-olds |
title_short | Pharmacokinetic modeling of [(18)F]fluorodeoxyglucose (FDG) for premature infants, and newborns through 5-year-olds |
title_sort | pharmacokinetic modeling of [(18)f]fluorodeoxyglucose (fdg) for premature infants, and newborns through 5-year-olds |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797375/ https://www.ncbi.nlm.nih.gov/pubmed/26988861 http://dx.doi.org/10.1186/s13550-016-0179-6 |
work_keys_str_mv | AT khamwankitiwat pharmacokineticmodelingof18ffluorodeoxyglucosefdgforprematureinfantsandnewbornsthrough5yearolds AT plykudonika pharmacokineticmodelingof18ffluorodeoxyglucosefdgforprematureinfantsandnewbornsthrough5yearolds AT oreillyshannone pharmacokineticmodelingof18ffluorodeoxyglucosefdgforprematureinfantsandnewbornsthrough5yearolds AT goodkindalison pharmacokineticmodelingof18ffluorodeoxyglucosefdgforprematureinfantsandnewbornsthrough5yearolds AT caoxinhua pharmacokineticmodelingof18ffluorodeoxyglucosefdgforprematureinfantsandnewbornsthrough5yearolds AT faheyfrederich pharmacokineticmodelingof18ffluorodeoxyglucosefdgforprematureinfantsandnewbornsthrough5yearolds AT trevessted pharmacokineticmodelingof18ffluorodeoxyglucosefdgforprematureinfantsandnewbornsthrough5yearolds AT bolchwesleye pharmacokineticmodelingof18ffluorodeoxyglucosefdgforprematureinfantsandnewbornsthrough5yearolds AT sgourosgeorge pharmacokineticmodelingof18ffluorodeoxyglucosefdgforprematureinfantsandnewbornsthrough5yearolds |