Cargando…
Formulation, characterization and evaluation of the effect of polymer concentration on the release behavior of insulin-loaded Eudragit(®)-entrapped mucoadhesive microspheres
INTRODUCTION: The aim of this study was to use Eudragit(®) RL 100 (pH-independent polymer) and magnesium stearate (a hydrophobic droplet stabilizer) in combination to improve the controlled release effect of insulin-loaded Eudragit(®) entrapped microspheres prepared by the emulsification-coacervatio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797490/ https://www.ncbi.nlm.nih.gov/pubmed/27051626 http://dx.doi.org/10.4103/2230-973X.177806 |
Sumario: | INTRODUCTION: The aim of this study was to use Eudragit(®) RL 100 (pH-independent polymer) and magnesium stearate (a hydrophobic droplet stabilizer) in combination to improve the controlled release effect of insulin-loaded Eudragit(®) entrapped microspheres prepared by the emulsification-coacervation technique. MATERIALS AND METHODS: Mucoadhesive insulin-loaded microspheres containing magnesium stearate and varying proportions of Eudragit(®) RL 100 were prepared by the emulsification-coacervation technique and evaluated for thermal properties, physicochemical performance, and in vitro dissolution in acidic and subsequently basic media. RESULTS: Stable, spherical, brownish, discrete, free-flowing and mucoadhesive insulin-loaded microspheres with size range of 14.20 ± 0.30-19.80 ± 0.60 μm and loading efficiency of 74.55 ± 1.05-75.90 ± 1.94% were formed. After 3 h, microspheres prepared with insulin: Eudragit(®) RL 100 ratios of 1:4, 1:6, and 1:8 released 73.40 ± 1.38, 66.20 ± 1.59, and 71.30 ± 1.27 (%) of insulin, respectively. CONCLUSION: The physicochemical and physico-technical properties of the microspheres developed in this study demonstrated the effectiveness of the Eudragit(®) RL entrapped mucoadhesive microspheres (prepared by the emulsification-coacervation technique using varying polymer concentration) as a carrier system for oral insulin delivery. |
---|