Cargando…
Dynamic CT perfusion image data compression for efficient parallel processing
The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799275/ https://www.ncbi.nlm.nih.gov/pubmed/26105146 http://dx.doi.org/10.1007/s11517-015-1331-6 |
_version_ | 1782422311768424448 |
---|---|
author | Barros, Renan Sales Olabarriaga, Silvia Delgado Borst, Jordi van Walderveen, Marianne A. A. Posthuma, Jorrit S. Streekstra, Geert J. van Herk, Marcel Majoie, Charles B. L. M. Marquering, Henk A. |
author_facet | Barros, Renan Sales Olabarriaga, Silvia Delgado Borst, Jordi van Walderveen, Marianne A. A. Posthuma, Jorrit S. Streekstra, Geert J. van Herk, Marcel Majoie, Charles B. L. M. Marquering, Henk A. |
author_sort | Barros, Renan Sales |
collection | PubMed |
description | The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast results. However, the size of CTP datasets makes transfers to cloud infrastructures time-consuming and therefore not suitable in acute situations. To reduce this transfer time, this work proposes a fast and lossless compression algorithm for CTP data. The algorithm exploits redundancies in the temporal dimension and keeps random read-only access to the image elements directly from the compressed data on the GPU. To the best of our knowledge, this is the first work to present a GPU-ready method for medical image compression with random access to the image elements from the compressed data. |
format | Online Article Text |
id | pubmed-4799275 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-47992752016-04-06 Dynamic CT perfusion image data compression for efficient parallel processing Barros, Renan Sales Olabarriaga, Silvia Delgado Borst, Jordi van Walderveen, Marianne A. A. Posthuma, Jorrit S. Streekstra, Geert J. van Herk, Marcel Majoie, Charles B. L. M. Marquering, Henk A. Med Biol Eng Comput Original Article The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast results. However, the size of CTP datasets makes transfers to cloud infrastructures time-consuming and therefore not suitable in acute situations. To reduce this transfer time, this work proposes a fast and lossless compression algorithm for CTP data. The algorithm exploits redundancies in the temporal dimension and keeps random read-only access to the image elements directly from the compressed data on the GPU. To the best of our knowledge, this is the first work to present a GPU-ready method for medical image compression with random access to the image elements from the compressed data. Springer Berlin Heidelberg 2015-06-24 2016 /pmc/articles/PMC4799275/ /pubmed/26105146 http://dx.doi.org/10.1007/s11517-015-1331-6 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Barros, Renan Sales Olabarriaga, Silvia Delgado Borst, Jordi van Walderveen, Marianne A. A. Posthuma, Jorrit S. Streekstra, Geert J. van Herk, Marcel Majoie, Charles B. L. M. Marquering, Henk A. Dynamic CT perfusion image data compression for efficient parallel processing |
title | Dynamic CT perfusion image data compression for efficient parallel processing |
title_full | Dynamic CT perfusion image data compression for efficient parallel processing |
title_fullStr | Dynamic CT perfusion image data compression for efficient parallel processing |
title_full_unstemmed | Dynamic CT perfusion image data compression for efficient parallel processing |
title_short | Dynamic CT perfusion image data compression for efficient parallel processing |
title_sort | dynamic ct perfusion image data compression for efficient parallel processing |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799275/ https://www.ncbi.nlm.nih.gov/pubmed/26105146 http://dx.doi.org/10.1007/s11517-015-1331-6 |
work_keys_str_mv | AT barrosrenansales dynamicctperfusionimagedatacompressionforefficientparallelprocessing AT olabarriagasilviadelgado dynamicctperfusionimagedatacompressionforefficientparallelprocessing AT borstjordi dynamicctperfusionimagedatacompressionforefficientparallelprocessing AT vanwalderveenmarianneaa dynamicctperfusionimagedatacompressionforefficientparallelprocessing AT posthumajorrits dynamicctperfusionimagedatacompressionforefficientparallelprocessing AT streekstrageertj dynamicctperfusionimagedatacompressionforefficientparallelprocessing AT vanherkmarcel dynamicctperfusionimagedatacompressionforefficientparallelprocessing AT majoiecharlesblm dynamicctperfusionimagedatacompressionforefficientparallelprocessing AT marqueringhenka dynamicctperfusionimagedatacompressionforefficientparallelprocessing |