Cargando…

Dynamic CT perfusion image data compression for efficient parallel processing

The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast...

Descripción completa

Detalles Bibliográficos
Autores principales: Barros, Renan Sales, Olabarriaga, Silvia Delgado, Borst, Jordi, van Walderveen, Marianne A. A., Posthuma, Jorrit S., Streekstra, Geert J., van Herk, Marcel, Majoie, Charles B. L. M., Marquering, Henk A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799275/
https://www.ncbi.nlm.nih.gov/pubmed/26105146
http://dx.doi.org/10.1007/s11517-015-1331-6
_version_ 1782422311768424448
author Barros, Renan Sales
Olabarriaga, Silvia Delgado
Borst, Jordi
van Walderveen, Marianne A. A.
Posthuma, Jorrit S.
Streekstra, Geert J.
van Herk, Marcel
Majoie, Charles B. L. M.
Marquering, Henk A.
author_facet Barros, Renan Sales
Olabarriaga, Silvia Delgado
Borst, Jordi
van Walderveen, Marianne A. A.
Posthuma, Jorrit S.
Streekstra, Geert J.
van Herk, Marcel
Majoie, Charles B. L. M.
Marquering, Henk A.
author_sort Barros, Renan Sales
collection PubMed
description The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast results. However, the size of CTP datasets makes transfers to cloud infrastructures time-consuming and therefore not suitable in acute situations. To reduce this transfer time, this work proposes a fast and lossless compression algorithm for CTP data. The algorithm exploits redundancies in the temporal dimension and keeps random read-only access to the image elements directly from the compressed data on the GPU. To the best of our knowledge, this is the first work to present a GPU-ready method for medical image compression with random access to the image elements from the compressed data.
format Online
Article
Text
id pubmed-4799275
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-47992752016-04-06 Dynamic CT perfusion image data compression for efficient parallel processing Barros, Renan Sales Olabarriaga, Silvia Delgado Borst, Jordi van Walderveen, Marianne A. A. Posthuma, Jorrit S. Streekstra, Geert J. van Herk, Marcel Majoie, Charles B. L. M. Marquering, Henk A. Med Biol Eng Comput Original Article The increasing size of medical imaging data, in particular time series such as CT perfusion (CTP), requires new and fast approaches to deliver timely results for acute care. Cloud architectures based on graphics processing units (GPUs) can provide the processing capacity required for delivering fast results. However, the size of CTP datasets makes transfers to cloud infrastructures time-consuming and therefore not suitable in acute situations. To reduce this transfer time, this work proposes a fast and lossless compression algorithm for CTP data. The algorithm exploits redundancies in the temporal dimension and keeps random read-only access to the image elements directly from the compressed data on the GPU. To the best of our knowledge, this is the first work to present a GPU-ready method for medical image compression with random access to the image elements from the compressed data. Springer Berlin Heidelberg 2015-06-24 2016 /pmc/articles/PMC4799275/ /pubmed/26105146 http://dx.doi.org/10.1007/s11517-015-1331-6 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Article
Barros, Renan Sales
Olabarriaga, Silvia Delgado
Borst, Jordi
van Walderveen, Marianne A. A.
Posthuma, Jorrit S.
Streekstra, Geert J.
van Herk, Marcel
Majoie, Charles B. L. M.
Marquering, Henk A.
Dynamic CT perfusion image data compression for efficient parallel processing
title Dynamic CT perfusion image data compression for efficient parallel processing
title_full Dynamic CT perfusion image data compression for efficient parallel processing
title_fullStr Dynamic CT perfusion image data compression for efficient parallel processing
title_full_unstemmed Dynamic CT perfusion image data compression for efficient parallel processing
title_short Dynamic CT perfusion image data compression for efficient parallel processing
title_sort dynamic ct perfusion image data compression for efficient parallel processing
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799275/
https://www.ncbi.nlm.nih.gov/pubmed/26105146
http://dx.doi.org/10.1007/s11517-015-1331-6
work_keys_str_mv AT barrosrenansales dynamicctperfusionimagedatacompressionforefficientparallelprocessing
AT olabarriagasilviadelgado dynamicctperfusionimagedatacompressionforefficientparallelprocessing
AT borstjordi dynamicctperfusionimagedatacompressionforefficientparallelprocessing
AT vanwalderveenmarianneaa dynamicctperfusionimagedatacompressionforefficientparallelprocessing
AT posthumajorrits dynamicctperfusionimagedatacompressionforefficientparallelprocessing
AT streekstrageertj dynamicctperfusionimagedatacompressionforefficientparallelprocessing
AT vanherkmarcel dynamicctperfusionimagedatacompressionforefficientparallelprocessing
AT majoiecharlesblm dynamicctperfusionimagedatacompressionforefficientparallelprocessing
AT marqueringhenka dynamicctperfusionimagedatacompressionforefficientparallelprocessing