Cargando…
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past deca...
Autores principales: | Wei, Jie, Chen, Tong, Liu, Guangyuan, Yang, Jiemin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4800309/ https://www.ncbi.nlm.nih.gov/pubmed/26996254 http://dx.doi.org/10.1038/srep23384 |
Ejemplares similares
-
Local Polynomial Estimation of Heteroscedasticity in a Multivariate Linear Regression Model and Its Applications in Economics
por: Su, Liyun, et al.
Publicado: (2012) -
On the higher-order Sheffer orthogonal polynomial sequences
por: Galiffa, Daniel J
Publicado: (2013) -
Correction: Local Polynomial Estimation of Heteroscedasticity in a Multivariate Linear Regression Model and Its Applications in Economics
por: Su, Liyun, et al.
Publicado: (2012) -
Multivariate polynomial approximation
por: Reimer, Manfred
Publicado: (2003) -
Generation of multivariate Hermite interpolating polynomials
por: Tavares, Santiago Alves
Publicado: (2005)