Cargando…

Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability

Freezing colloidal suspensions widely exists in nature and industry. Interface instability has attracted much attention for the understandings of the pattern formation in freezing colloidal suspensions. However, the interface instability modes, the origin of the ice banding or ice lamellae, are stil...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lilin, You, Jiaxue, Wang, Zhijun, Wang, Jincheng, Lin, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4800406/
https://www.ncbi.nlm.nih.gov/pubmed/26996630
http://dx.doi.org/10.1038/srep23358
Descripción
Sumario:Freezing colloidal suspensions widely exists in nature and industry. Interface instability has attracted much attention for the understandings of the pattern formation in freezing colloidal suspensions. However, the interface instability modes, the origin of the ice banding or ice lamellae, are still unclear. In-situ experimental observation of the onset of interface instability remains absent up to now. Here, by directly imaging the initial transient stage of planar interface instability in directional freezing colloidal suspensions, we proposed three interface instability modes, Mullins-Sekerka instability, global split instability and local split instability. The intrinsic mechanism of the instability modes comes from the competition of the solute boundary layer and the particle boundary layer, which only can be revealed from the initial transient stage of planar instability in directional freezing.