Cargando…

In vitro biomechanical study of pedicle screw pull-out strength based on different screw path preparation techniques

BACKGROUND: Poor screw-to-bone fixation is a clinical problem that can lead to screw loosening. Under-tapping (UT) the pedicle screw has been evaluated biomechanically in the past. The objective of the study was to determine if pedicle preparation with a sequential tapping technique will alter the s...

Descripción completa

Detalles Bibliográficos
Autores principales: Moldavsky, Mark, Salloum, Kanaan, Bucklen, Brandon, Khalil, Saif, Mehta, Jwalant S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4800961/
https://www.ncbi.nlm.nih.gov/pubmed/27053808
http://dx.doi.org/10.4103/0019-5413.177572
Descripción
Sumario:BACKGROUND: Poor screw-to-bone fixation is a clinical problem that can lead to screw loosening. Under-tapping (UT) the pedicle screw has been evaluated biomechanically in the past. The objective of the study was to determine if pedicle preparation with a sequential tapping technique will alter the screw-to-bone fixation strength using a stress relaxation testing loading protocol. MATERIALS AND METHODS: Three thoracolumbar calf spines were instrumented with pedicle screws that were either probed, UT, standard-tapped (ST), or sequential tapped to prepare the pedicle screw track and a stress relaxation protocol was used to determine pull-out strength. The maximum torque required for pedicle screw insertion and pull-out strength was reported. A one-way ANOVA and Tukeys post-hoc test were used to determine statistical significance. RESULTS: The pedicle screw insertion torques for the probed, UT, ST and sequentially tapped (SQT) techniques were 5.09 (±1.08) Nm, 5.39 (±1.61) Nm, 2.93 (±0.43) Nm, and 3.54 (±0.67) Nm, respectively. There is a significant difference between probed compared to ST (P ≤ 0.05), as well as UT compared to both ST and SQT (P ≤ 0.05). The pull-out strength for pedicle screws for the probed, UT, ST and SQT techniques was 2443 (±782) N, 2353(±918) N, 2474 (±521) N, and 2146 (±582) N, respectively, with no significant difference (P ≥ 0.05) between techniques. CONCLUSIONS: The ST technique resulted in the highest pull-out strength while the SQT technique resulted in the lowest. However, there was no significant difference in the pull-out strength for the various preparation techniques and there was no correlation between insertion torque and pull-out strength. This suggests that other factors such as bone density may have a greater influence on pull-out strength.