Cargando…
Multilevel Upper Body Movement Control during Gait in Children with Cerebral Palsy
Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper bod...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801392/ https://www.ncbi.nlm.nih.gov/pubmed/26999362 http://dx.doi.org/10.1371/journal.pone.0151792 |
_version_ | 1782422575107801088 |
---|---|
author | Summa, Aurora Vannozzi, Giuseppe Bergamini, Elena Iosa, Marco Morelli, Daniela Cappozzo, Aurelio |
author_facet | Summa, Aurora Vannozzi, Giuseppe Bergamini, Elena Iosa, Marco Morelli, Daniela Cappozzo, Aurelio |
author_sort | Summa, Aurora |
collection | PubMed |
description | Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper body accelerations. However, the literature describing how they are transmitted from the pelvis to the head is lacking. This study proposes a multilevel motion sensor approach to characterize upper body accelerations and how they propagate from pelvis to head in children with CP, comparing with their TD peers. Two age- and gender-matched groups of 20 children performed a 10m walking test at self-selected speed while wearing three magneto-inertial sensors located at pelvis, sternum, and head levels. The root mean square value of the accelerations at each level was computed in a local anatomical frame and its variation from lower to upper levels was described using attenuation coefficients. Between-group differences were assessed performing an ANCOVA, while the mutual dependence between acceleration components and the relationship between biomechanical parameters and typical clinical scores were investigated using Regression Analysis and Spearman’s Correlation, respectively (α = 0.05). New insights were obtained on how the CP group managed the transmission of accelerations through the upper body. Despite a significant reduction of the acceleration from pelvis to sternum, children with CP do not compensate for large accelerations, which are greater than in TD children. Furthermore, those with CP showed negative sternum-to-head attenuations, in agreement with the documented rigidity of the head-trunk system observed in this population. In addition, the estimated parameters proved to correlate with the scores used in daily clinical practice. The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization. |
format | Online Article Text |
id | pubmed-4801392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48013922016-03-23 Multilevel Upper Body Movement Control during Gait in Children with Cerebral Palsy Summa, Aurora Vannozzi, Giuseppe Bergamini, Elena Iosa, Marco Morelli, Daniela Cappozzo, Aurelio PLoS One Research Article Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper body accelerations. However, the literature describing how they are transmitted from the pelvis to the head is lacking. This study proposes a multilevel motion sensor approach to characterize upper body accelerations and how they propagate from pelvis to head in children with CP, comparing with their TD peers. Two age- and gender-matched groups of 20 children performed a 10m walking test at self-selected speed while wearing three magneto-inertial sensors located at pelvis, sternum, and head levels. The root mean square value of the accelerations at each level was computed in a local anatomical frame and its variation from lower to upper levels was described using attenuation coefficients. Between-group differences were assessed performing an ANCOVA, while the mutual dependence between acceleration components and the relationship between biomechanical parameters and typical clinical scores were investigated using Regression Analysis and Spearman’s Correlation, respectively (α = 0.05). New insights were obtained on how the CP group managed the transmission of accelerations through the upper body. Despite a significant reduction of the acceleration from pelvis to sternum, children with CP do not compensate for large accelerations, which are greater than in TD children. Furthermore, those with CP showed negative sternum-to-head attenuations, in agreement with the documented rigidity of the head-trunk system observed in this population. In addition, the estimated parameters proved to correlate with the scores used in daily clinical practice. The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization. Public Library of Science 2016-03-21 /pmc/articles/PMC4801392/ /pubmed/26999362 http://dx.doi.org/10.1371/journal.pone.0151792 Text en © 2016 Summa et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Summa, Aurora Vannozzi, Giuseppe Bergamini, Elena Iosa, Marco Morelli, Daniela Cappozzo, Aurelio Multilevel Upper Body Movement Control during Gait in Children with Cerebral Palsy |
title | Multilevel Upper Body Movement Control during Gait in Children with Cerebral Palsy |
title_full | Multilevel Upper Body Movement Control during Gait in Children with Cerebral Palsy |
title_fullStr | Multilevel Upper Body Movement Control during Gait in Children with Cerebral Palsy |
title_full_unstemmed | Multilevel Upper Body Movement Control during Gait in Children with Cerebral Palsy |
title_short | Multilevel Upper Body Movement Control during Gait in Children with Cerebral Palsy |
title_sort | multilevel upper body movement control during gait in children with cerebral palsy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801392/ https://www.ncbi.nlm.nih.gov/pubmed/26999362 http://dx.doi.org/10.1371/journal.pone.0151792 |
work_keys_str_mv | AT summaaurora multilevelupperbodymovementcontrolduringgaitinchildrenwithcerebralpalsy AT vannozzigiuseppe multilevelupperbodymovementcontrolduringgaitinchildrenwithcerebralpalsy AT bergaminielena multilevelupperbodymovementcontrolduringgaitinchildrenwithcerebralpalsy AT iosamarco multilevelupperbodymovementcontrolduringgaitinchildrenwithcerebralpalsy AT morellidaniela multilevelupperbodymovementcontrolduringgaitinchildrenwithcerebralpalsy AT cappozzoaurelio multilevelupperbodymovementcontrolduringgaitinchildrenwithcerebralpalsy |