Cargando…
An investigation of the structural, connectional, and functional subspecialization in the human amygdala
Although the amygdala complex is a brain area critical for human behavior, knowledge of its subspecialization is primarily derived from experiments in animals. We here employed methods for large‐scale data mining to perform a connectivity‐derived parcellation of the human amygdala based on whole‐bra...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801486/ https://www.ncbi.nlm.nih.gov/pubmed/22806915 http://dx.doi.org/10.1002/hbm.22138 |
_version_ | 1782422584365678592 |
---|---|
author | Bzdok, Danilo Laird, Angela R. Zilles, Karl Fox, Peter T. Eickhoff, Simon B. |
author_facet | Bzdok, Danilo Laird, Angela R. Zilles, Karl Fox, Peter T. Eickhoff, Simon B. |
author_sort | Bzdok, Danilo |
collection | PubMed |
description | Although the amygdala complex is a brain area critical for human behavior, knowledge of its subspecialization is primarily derived from experiments in animals. We here employed methods for large‐scale data mining to perform a connectivity‐derived parcellation of the human amygdala based on whole‐brain coactivation patterns computed for each seed voxel. Voxels within the histologically defined human amygdala were clustered into distinct groups based on their brain‐wide coactivation maps. Using this approach, connectivity‐based parcellation divided the amygdala into three distinct clusters that are highly consistent with earlier microstructural distinctions. Meta‐analytic connectivity modelling then revealed the derived clusters' brain‐wide connectivity patterns, while meta‐data profiling allowed their functional characterization. These analyses revealed that the amygdala's laterobasal nuclei group was associated with coordinating high‐level sensory input, whereas its centromedial nuclei group was linked to mediating attentional, vegetative, and motor responses. The often‐neglected superficial nuclei group emerged as particularly sensitive to olfactory and probably social information processing. The results of this model‐free approach support the concordance of structural, connectional, and functional organization in the human amygdala and point to the importance of acknowledging the heterogeneity of this region in neuroimaging research. Hum Brain Mapp 34:3247–3266, 2013. © 2012 Wiley Periodicals, Inc. |
format | Online Article Text |
id | pubmed-4801486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48014862016-03-21 An investigation of the structural, connectional, and functional subspecialization in the human amygdala Bzdok, Danilo Laird, Angela R. Zilles, Karl Fox, Peter T. Eickhoff, Simon B. Hum Brain Mapp Research Articles Although the amygdala complex is a brain area critical for human behavior, knowledge of its subspecialization is primarily derived from experiments in animals. We here employed methods for large‐scale data mining to perform a connectivity‐derived parcellation of the human amygdala based on whole‐brain coactivation patterns computed for each seed voxel. Voxels within the histologically defined human amygdala were clustered into distinct groups based on their brain‐wide coactivation maps. Using this approach, connectivity‐based parcellation divided the amygdala into three distinct clusters that are highly consistent with earlier microstructural distinctions. Meta‐analytic connectivity modelling then revealed the derived clusters' brain‐wide connectivity patterns, while meta‐data profiling allowed their functional characterization. These analyses revealed that the amygdala's laterobasal nuclei group was associated with coordinating high‐level sensory input, whereas its centromedial nuclei group was linked to mediating attentional, vegetative, and motor responses. The often‐neglected superficial nuclei group emerged as particularly sensitive to olfactory and probably social information processing. The results of this model‐free approach support the concordance of structural, connectional, and functional organization in the human amygdala and point to the importance of acknowledging the heterogeneity of this region in neuroimaging research. Hum Brain Mapp 34:3247–3266, 2013. © 2012 Wiley Periodicals, Inc. John Wiley and Sons Inc. 2012-07-17 /pmc/articles/PMC4801486/ /pubmed/22806915 http://dx.doi.org/10.1002/hbm.22138 Text en Copyright © 2012 Wiley Periodicals, Inc. Open access. |
spellingShingle | Research Articles Bzdok, Danilo Laird, Angela R. Zilles, Karl Fox, Peter T. Eickhoff, Simon B. An investigation of the structural, connectional, and functional subspecialization in the human amygdala |
title | An investigation of the structural, connectional, and functional subspecialization in the human amygdala |
title_full | An investigation of the structural, connectional, and functional subspecialization in the human amygdala |
title_fullStr | An investigation of the structural, connectional, and functional subspecialization in the human amygdala |
title_full_unstemmed | An investigation of the structural, connectional, and functional subspecialization in the human amygdala |
title_short | An investigation of the structural, connectional, and functional subspecialization in the human amygdala |
title_sort | investigation of the structural, connectional, and functional subspecialization in the human amygdala |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801486/ https://www.ncbi.nlm.nih.gov/pubmed/22806915 http://dx.doi.org/10.1002/hbm.22138 |
work_keys_str_mv | AT bzdokdanilo aninvestigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala AT lairdangelar aninvestigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala AT zilleskarl aninvestigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala AT foxpetert aninvestigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala AT eickhoffsimonb aninvestigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala AT bzdokdanilo investigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala AT lairdangelar investigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala AT zilleskarl investigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala AT foxpetert investigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala AT eickhoffsimonb investigationofthestructuralconnectionalandfunctionalsubspecializationinthehumanamygdala |