Cargando…
System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit
Errors compensation of micromachined-inertial-measurement-units (MIMU) is essential in practical applications. This paper presents a new compensation method using a neural-network-based identification for MIMU, which capably solves the universal problems of cross-coupling, misalignment, eccentricity...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801552/ https://www.ncbi.nlm.nih.gov/pubmed/26840314 http://dx.doi.org/10.3390/s16020175 |
_version_ | 1782422595179642880 |
---|---|
author | Liu, Shi Qiang Zhu, Rong |
author_facet | Liu, Shi Qiang Zhu, Rong |
author_sort | Liu, Shi Qiang |
collection | PubMed |
description | Errors compensation of micromachined-inertial-measurement-units (MIMU) is essential in practical applications. This paper presents a new compensation method using a neural-network-based identification for MIMU, which capably solves the universal problems of cross-coupling, misalignment, eccentricity, and other deterministic errors existing in a three-dimensional integrated system. Using a neural network to model a complex multivariate and nonlinear coupling system, the errors could be readily compensated through a comprehensive calibration. In this paper, we also present a thermal-gas MIMU based on thermal expansion, which measures three-axis angular rates and three-axis accelerations using only three thermal-gas inertial sensors, each of which capably measures one-axis angular rate and one-axis acceleration simultaneously in one chip. The developed MIMU (100 × 100 × 100 mm(3)) possesses the advantages of simple structure, high shock resistance, and large measuring ranges (three-axes angular rates of ±4000°/s and three-axes accelerations of ±10 g) compared with conventional MIMU, due to using gas medium instead of mechanical proof mass as the key moving and sensing elements. However, the gas MIMU suffers from cross-coupling effects, which corrupt the system accuracy. The proposed compensation method is, therefore, applied to compensate the system errors of the MIMU. Experiments validate the effectiveness of the compensation, and the measurement errors of three-axis angular rates and three-axis accelerations are reduced to less than 1% and 3% of uncompensated errors in the rotation range of ±600°/s and the acceleration range of ±1 g, respectively. |
format | Online Article Text |
id | pubmed-4801552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-48015522016-03-25 System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit Liu, Shi Qiang Zhu, Rong Sensors (Basel) Article Errors compensation of micromachined-inertial-measurement-units (MIMU) is essential in practical applications. This paper presents a new compensation method using a neural-network-based identification for MIMU, which capably solves the universal problems of cross-coupling, misalignment, eccentricity, and other deterministic errors existing in a three-dimensional integrated system. Using a neural network to model a complex multivariate and nonlinear coupling system, the errors could be readily compensated through a comprehensive calibration. In this paper, we also present a thermal-gas MIMU based on thermal expansion, which measures three-axis angular rates and three-axis accelerations using only three thermal-gas inertial sensors, each of which capably measures one-axis angular rate and one-axis acceleration simultaneously in one chip. The developed MIMU (100 × 100 × 100 mm(3)) possesses the advantages of simple structure, high shock resistance, and large measuring ranges (three-axes angular rates of ±4000°/s and three-axes accelerations of ±10 g) compared with conventional MIMU, due to using gas medium instead of mechanical proof mass as the key moving and sensing elements. However, the gas MIMU suffers from cross-coupling effects, which corrupt the system accuracy. The proposed compensation method is, therefore, applied to compensate the system errors of the MIMU. Experiments validate the effectiveness of the compensation, and the measurement errors of three-axis angular rates and three-axis accelerations are reduced to less than 1% and 3% of uncompensated errors in the rotation range of ±600°/s and the acceleration range of ±1 g, respectively. MDPI 2016-01-29 /pmc/articles/PMC4801552/ /pubmed/26840314 http://dx.doi.org/10.3390/s16020175 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Shi Qiang Zhu, Rong System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit |
title | System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit |
title_full | System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit |
title_fullStr | System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit |
title_full_unstemmed | System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit |
title_short | System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit |
title_sort | system error compensation methodology based on a neural network for a micromachined inertial measurement unit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801552/ https://www.ncbi.nlm.nih.gov/pubmed/26840314 http://dx.doi.org/10.3390/s16020175 |
work_keys_str_mv | AT liushiqiang systemerrorcompensationmethodologybasedonaneuralnetworkforamicromachinedinertialmeasurementunit AT zhurong systemerrorcompensationmethodologybasedonaneuralnetworkforamicromachinedinertialmeasurementunit |