Cargando…
Recognition of Human Activities Using Continuous Autoencoders with Wearable Sensors
This paper provides an approach for recognizing human activities with wearable sensors. The continuous autoencoder (CAE) as a novel stochastic neural network model is proposed which improves the ability of model continuous data. CAE adds Gaussian random units into the improved sigmoid activation fun...
Autor principal: | Wang, Lukun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801566/ https://www.ncbi.nlm.nih.gov/pubmed/26861319 http://dx.doi.org/10.3390/s16020189 |
Ejemplares similares
-
Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders
por: Ni, Qin, et al.
Publicado: (2020) -
Transformer fault diagnosis using continuous sparse autoencoder
por: Wang, Lukun, et al.
Publicado: (2016) -
Physical Human Activity Recognition Using Wearable Sensors
por: Attal, Ferhat, et al.
Publicado: (2015) -
Human activity recognition
:
using wearable sensors and smartphones
por: Labrador, Miguel A, et al.
Publicado: (2014) -
Wearable Sensor-Based Human Activity Recognition with Transformer Model
por: Dirgová Luptáková, Iveta, et al.
Publicado: (2022)