Cargando…
Hybrid EEG—Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal
Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the br...
Autores principales: | Mannan, Malik M. Naeem, Kim, Shinjung, Jeong, Myung Yung, Kamran, M. Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801617/ https://www.ncbi.nlm.nih.gov/pubmed/26907276 http://dx.doi.org/10.3390/s16020241 |
Ejemplares similares
-
Hybrid ICA—Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals
por: Mannan, Malik M. Naeem, et al.
Publicado: (2016) -
Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data
por: Plöchl, Michael, et al.
Publicado: (2012) -
A Removal of Eye Movement and Blink Artifacts from EEG Data Using Morphological Component Analysis
por: Singh, Balbir, et al.
Publicado: (2017) -
Eye-blink artifact removal from single channel EEG with k-means and SSA
por: Maddirala, Ajay Kumar, et al.
Publicado: (2021) -
SSA with CWT and k-Means for Eye-Blink Artifact Removal from Single-Channel EEG Signals
por: Maddirala, Ajay Kumar, et al.
Publicado: (2022)