Cargando…

Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator

The creation of nanometre-sized structures that exhibit controllable motions and functions is a critical step towards building nanomachines. Recent developments in the field of DNA nanotechnology have begun to address these goals, demonstrating complex static or dynamic nanostructures made of DNA. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Ke, Yonggang, Meyer, Travis, Shih, William M., Bellot, Gaetan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802031/
https://www.ncbi.nlm.nih.gov/pubmed/26988942
http://dx.doi.org/10.1038/ncomms10935
Descripción
Sumario:The creation of nanometre-sized structures that exhibit controllable motions and functions is a critical step towards building nanomachines. Recent developments in the field of DNA nanotechnology have begun to address these goals, demonstrating complex static or dynamic nanostructures made of DNA. Here we have designed and constructed a rhombus-shaped DNA origami ‘nanoactuator' that uses mechanical linkages to copy distance changes induced on one half (‘the driver') to be propagated to the other half (‘the mirror'). By combining this nanoactuator with split enhanced green fluorescent protein (eGFP), we have constructed a DNA–protein hybrid nanostructure that demonstrates tunable fluorescent behaviours via long-range allosteric regulation. In addition, the nanoactuator can be used as a sensor that responds to specific stimuli, including changes in buffer composition and the presence of restriction enzymes or specific nucleic acids.