Cargando…

A strategy for sequence control in vinyl polymers via iterative controlled radical cyclization

There is a growing interest in sequence-controlled polymers toward advanced functional materials. However, control of side-chain order for vinyl polymers has been lacking feasibility in the field of polymer synthesis because of the inherent feature of chain-growth propagation. Here we show a general...

Descripción completa

Detalles Bibliográficos
Autores principales: Hibi, Yusuke, Ouchi, Makoto, Sawamoto, Mitsuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802161/
https://www.ncbi.nlm.nih.gov/pubmed/26996881
http://dx.doi.org/10.1038/ncomms11064
Descripción
Sumario:There is a growing interest in sequence-controlled polymers toward advanced functional materials. However, control of side-chain order for vinyl polymers has been lacking feasibility in the field of polymer synthesis because of the inherent feature of chain-growth propagation. Here we show a general and versatile strategy to control sequence in vinyl polymers through iterative radical cyclization with orthogonally cleavable and renewable bonds. The proposed methodology employs a repetitive and iterative intramolecular cyclization via a radical intermediate in a one-time template with a radical-generating site at one end and an alkene end at the other, each of which is connected to a linker via independently cleavable and renewable bonds. The unique design specifically allowed control of radical addition reaction although inherent chain-growth intermediate (radical species) was used, as well as the iterative cycle and functionalization for resultant side chains, to lead to sequence-controlled vinyl polymers (or oligomers).