Cargando…
Learning stochastic process-based models of dynamical systems from knowledge and data
BACKGROUND: Identifying a proper model structure, using methods that address both structural and parameter uncertainty, is a crucial problem within the systems approach to biology. And yet, it has a marginal presence in the recent literature. While many existing approaches integrate methods for simu...
Autores principales: | Tanevski, Jovan, Todorovski, Ljupčo, Džeroski, Sašo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802653/ https://www.ncbi.nlm.nih.gov/pubmed/27005698 http://dx.doi.org/10.1186/s12918-016-0273-4 |
Ejemplares similares
-
Process-based design of dynamical biological systems
por: Tanevski, Jovan, et al.
Publicado: (2016) -
Domain-specific model selection for structural identification of the Rab5-Rab7 dynamics in endocytosis
por: Tanevski, Jovan, et al.
Publicado: (2015) -
Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models
por: Simidjievski, Nikola, et al.
Publicado: (2016) -
Machine learning and knowledge discovery in databases: European conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, proceedings, part I
por: Ceci, Michelangelo, et al.
Publicado: (2017) -
Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis
por: Tashkova, Katerina, et al.
Publicado: (2011)