Cargando…
Genome-wide epigenetic analysis of MEF2A and MEF2C transcription factors in mouse cortical neurons
The transcription factors of the myocyte enhancer factor 2 family (MEF2 A-D) are highly expressed in the brain and play a key role in neuronal survival/apoptosis, differentiation and synaptic plasticity. However, the precise genome-wide mapping of different members of the family has not yet been ful...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802763/ https://www.ncbi.nlm.nih.gov/pubmed/27066173 http://dx.doi.org/10.1080/19420889.2015.1087624 |
Sumario: | The transcription factors of the myocyte enhancer factor 2 family (MEF2 A-D) are highly expressed in the brain and play a key role in neuronal survival/apoptosis, differentiation and synaptic plasticity. However, the precise genome-wide mapping of different members of the family has not yet been fully elucidated. Here, we report the comparative analysis of MEF2A and MEF2C genome-wide mapping in mouse cortical neurons by ChIP-seq, a powerful approach to elucidate the genomic functions of transcription factors and to identify their transcriptional targets. Our analysis reveals that MEF2A and MEF2C each orchestrate similar epigenomic programs mainly through the binding of enhancer regulatory elements in proximity of target genes involved in neuronal plasticity and calcium signaling. We highlight the differences in the enhancer networks and molecular pathways regulated by MEF2A and MEF2C, which might be determined by the combinatorial action of different transcription factors. |
---|