Cargando…
Prevention of copper-induced cell death by GC-rich DNA oligomers in murine macrophage-like RAW264.7 cells
Impact of redox active transition metals on activation of cell death signaling in plant cells have been documented to date. We have recently reported that GC-rich DNA oligomers with high affinity for binding of copper and catalytic activity for removal of ROS as novel plant cell-protecting agents. H...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802767/ https://www.ncbi.nlm.nih.gov/pubmed/27066170 http://dx.doi.org/10.1080/19420889.2015.1017173 |
Sumario: | Impact of redox active transition metals on activation of cell death signaling in plant cells have been documented to date. We have recently reported that GC-rich DNA oligomers with high affinity for binding of copper and catalytic activity for removal of ROS as novel plant cell-protecting agents. Here, we show that similar DNA oligomers protect the mouse macrophage-like RAW264.7 cells from copper-induced cell death, suggesting that the phenomenon firstly observed in plant model can be expanded to a wider range of cells and/or organisms including mammalian cells. |
---|