Cargando…

The tight relationship between asymmetric signaling and locational excitability in motoneuron dendrites

Spinal motoneurons possess large, highly branching dendritic structures that contain thousands of synaptic contacts and various voltage-gated ion channels (VGICs). Research has indicated that dendritic arborization and cable properties provide the basis for foundational dendritic processing, which i...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hojeong, Heckman, C J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802796/
https://www.ncbi.nlm.nih.gov/pubmed/27066175
http://dx.doi.org/10.1080/19420889.2015.1110657
Descripción
Sumario:Spinal motoneurons possess large, highly branching dendritic structures that contain thousands of synaptic contacts and various voltage-gated ion channels (VGICs). Research has indicated that dendritic arborization and cable properties provide the basis for foundational dendritic processing, which is characterized by direction-dependent signal propagation and location-dependent channel activation in dendritic arbors. Due to these arbors' complex structure, signals attenuate differentially depending on whether propagation occurs from the soma to the dendrite or in the opposite direction. In addition, current thresholds for the activation of dendritic ion channels differ depending on the location of these channels within dendrites. However, whether and how these foundational properties for dendritic signaling and excitability are related in motoneurons remains unclear. Based on our analyses of anatomically reconstructed motoneurons and novel reduced models, we propose that 1) directional signal propagation is similar across spinal motoneurons, regardless of cell type-specific structures; 2) reduced models that retain dendritic signaling asymmetry can accurately replicate anatomical dendritic excitability in both passive and active modes; and 3) asymmetric signal propagation and locational dendritic excitability are closely related, irrespective of motoneurons' arbor structures.