Cargando…

An estimating equation approach to dimension reduction for longitudinal data

Sufficient dimension reduction has been extensively explored in the context of independent and identically distributed data. In this article we generalize sufficient dimension reduction to longitudinal data and propose an estimating equation approach to estimating the central mean subspace. The prop...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Kelin, Guo, Wensheng, Xiong, Momiao, Zhu, Liping, Jin, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803001/
https://www.ncbi.nlm.nih.gov/pubmed/27017956
http://dx.doi.org/10.1093/biomet/asv066
_version_ 1782422827316543488
author Xu, Kelin
Guo, Wensheng
Xiong, Momiao
Zhu, Liping
Jin, Li
author_facet Xu, Kelin
Guo, Wensheng
Xiong, Momiao
Zhu, Liping
Jin, Li
author_sort Xu, Kelin
collection PubMed
description Sufficient dimension reduction has been extensively explored in the context of independent and identically distributed data. In this article we generalize sufficient dimension reduction to longitudinal data and propose an estimating equation approach to estimating the central mean subspace. The proposed method accounts for the covariance structure within each subject and improves estimation efficiency when the covariance structure is correctly specified. Even if the covariance structure is misspecified, our estimator remains consistent. In addition, our method relaxes distributional assumptions on the covariates and is doubly robust. To determine the structural dimension of the central mean subspace, we propose a Bayesian-type information criterion. We show that the estimated structural dimension is consistent and that the estimated basis directions are root- [Formula: see text] consistent, asymptotically normal and locally efficient. Simulations and an analysis of the Framingham Heart Study data confirm the effectiveness of our approach.
format Online
Article
Text
id pubmed-4803001
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-48030012017-03-01 An estimating equation approach to dimension reduction for longitudinal data Xu, Kelin Guo, Wensheng Xiong, Momiao Zhu, Liping Jin, Li Biometrika Articles Sufficient dimension reduction has been extensively explored in the context of independent and identically distributed data. In this article we generalize sufficient dimension reduction to longitudinal data and propose an estimating equation approach to estimating the central mean subspace. The proposed method accounts for the covariance structure within each subject and improves estimation efficiency when the covariance structure is correctly specified. Even if the covariance structure is misspecified, our estimator remains consistent. In addition, our method relaxes distributional assumptions on the covariates and is doubly robust. To determine the structural dimension of the central mean subspace, we propose a Bayesian-type information criterion. We show that the estimated structural dimension is consistent and that the estimated basis directions are root- [Formula: see text] consistent, asymptotically normal and locally efficient. Simulations and an analysis of the Framingham Heart Study data confirm the effectiveness of our approach. Oxford University Press 2016-03 2016-02-16 /pmc/articles/PMC4803001/ /pubmed/27017956 http://dx.doi.org/10.1093/biomet/asv066 Text en © 2016 Biometrika Trust
spellingShingle Articles
Xu, Kelin
Guo, Wensheng
Xiong, Momiao
Zhu, Liping
Jin, Li
An estimating equation approach to dimension reduction for longitudinal data
title An estimating equation approach to dimension reduction for longitudinal data
title_full An estimating equation approach to dimension reduction for longitudinal data
title_fullStr An estimating equation approach to dimension reduction for longitudinal data
title_full_unstemmed An estimating equation approach to dimension reduction for longitudinal data
title_short An estimating equation approach to dimension reduction for longitudinal data
title_sort estimating equation approach to dimension reduction for longitudinal data
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803001/
https://www.ncbi.nlm.nih.gov/pubmed/27017956
http://dx.doi.org/10.1093/biomet/asv066
work_keys_str_mv AT xukelin anestimatingequationapproachtodimensionreductionforlongitudinaldata
AT guowensheng anestimatingequationapproachtodimensionreductionforlongitudinaldata
AT xiongmomiao anestimatingequationapproachtodimensionreductionforlongitudinaldata
AT zhuliping anestimatingequationapproachtodimensionreductionforlongitudinaldata
AT jinli anestimatingequationapproachtodimensionreductionforlongitudinaldata
AT xukelin estimatingequationapproachtodimensionreductionforlongitudinaldata
AT guowensheng estimatingequationapproachtodimensionreductionforlongitudinaldata
AT xiongmomiao estimatingequationapproachtodimensionreductionforlongitudinaldata
AT zhuliping estimatingequationapproachtodimensionreductionforlongitudinaldata
AT jinli estimatingequationapproachtodimensionreductionforlongitudinaldata