Cargando…
A Novel Thyrotropin-Releasing Hormone Receptor Missense Mutation (P81R) in Central Congenital Hypothyroidism
CONTEXT: Isolated central congenital hypothyroidism (CCH) is rare and evades diagnosis on TSH-based congenital hypothyroidism (CH) screening programs in the United Kingdom. Accordingly, genetic ascertainment facilitates diagnosis and treatment of familial cases. Recognized causes include TSH β subun...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Endocrine Society
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803180/ https://www.ncbi.nlm.nih.gov/pubmed/26735259 http://dx.doi.org/10.1210/jc.2015-3916 |
_version_ | 1782422839784112128 |
---|---|
author | Koulouri, O. Nicholas, A. K. Schoenmakers, E. Mokrosinski, J. Lane, F. Cole, T. Kirk, J. Farooqi, I. S. Chatterjee, V. K. Gurnell, M. Schoenmakers, N. |
author_facet | Koulouri, O. Nicholas, A. K. Schoenmakers, E. Mokrosinski, J. Lane, F. Cole, T. Kirk, J. Farooqi, I. S. Chatterjee, V. K. Gurnell, M. Schoenmakers, N. |
author_sort | Koulouri, O. |
collection | PubMed |
description | CONTEXT: Isolated central congenital hypothyroidism (CCH) is rare and evades diagnosis on TSH-based congenital hypothyroidism (CH) screening programs in the United Kingdom. Accordingly, genetic ascertainment facilitates diagnosis and treatment of familial cases. Recognized causes include TSH β subunit (TSHB) and Ig superfamily member 1 (IGSF1) mutations, with only two previous reports of biallelic, highly disruptive mutations in the TRH receptor (TRHR) gene. CASE DESCRIPTION: A female infant presenting with prolonged neonatal jaundice was found to have isolated CCH, with TSH of 2.2 mU/L (Reference range, 0.4–3.5) and free T(4) of 7.9 pmol/L (0.61 ng/dL) (Reference range, 10.7–21.8 pmol/L). Because TSHB or IGSF1 mutations are usually associated with profound or X-linked CCH, TRHR was sequenced, and a homozygous mutation (p.P81R) was identified, substituting arginine for a highly conserved proline residue in transmembrane helix 2. Functional studies demonstrated normal cell membrane expression and localization of the mutant TRHR; however, its ability to bind radio-labelled TRH and signal via Gqα was markedly impaired, likely due to structural distortion of transmembrane helix 2. CONCLUSIONS: Two previously reported biallelic, highly disruptive (nonsense; R17*, in-frame deletion and single amino acid substitution; p.[S115-T117del; A118T]) TRHR mutations have been associated with CCH; however, we describe the first deleterious, missense TRHR defect associated with this phenotype. Importantly, the location of the mutated amino acid (proline 81) highlights the functional importance of the second transmembrane helix in mediating hormone binding and receptor activation. Future identification of other naturally occurring TRHR mutations will likely offer important insights into the molecular basis of ligand binding and activation of TRHR, which are still poorly understood. |
format | Online Article Text |
id | pubmed-4803180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Endocrine Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-48031802016-04-01 A Novel Thyrotropin-Releasing Hormone Receptor Missense Mutation (P81R) in Central Congenital Hypothyroidism Koulouri, O. Nicholas, A. K. Schoenmakers, E. Mokrosinski, J. Lane, F. Cole, T. Kirk, J. Farooqi, I. S. Chatterjee, V. K. Gurnell, M. Schoenmakers, N. J Clin Endocrinol Metab Special Features CONTEXT: Isolated central congenital hypothyroidism (CCH) is rare and evades diagnosis on TSH-based congenital hypothyroidism (CH) screening programs in the United Kingdom. Accordingly, genetic ascertainment facilitates diagnosis and treatment of familial cases. Recognized causes include TSH β subunit (TSHB) and Ig superfamily member 1 (IGSF1) mutations, with only two previous reports of biallelic, highly disruptive mutations in the TRH receptor (TRHR) gene. CASE DESCRIPTION: A female infant presenting with prolonged neonatal jaundice was found to have isolated CCH, with TSH of 2.2 mU/L (Reference range, 0.4–3.5) and free T(4) of 7.9 pmol/L (0.61 ng/dL) (Reference range, 10.7–21.8 pmol/L). Because TSHB or IGSF1 mutations are usually associated with profound or X-linked CCH, TRHR was sequenced, and a homozygous mutation (p.P81R) was identified, substituting arginine for a highly conserved proline residue in transmembrane helix 2. Functional studies demonstrated normal cell membrane expression and localization of the mutant TRHR; however, its ability to bind radio-labelled TRH and signal via Gqα was markedly impaired, likely due to structural distortion of transmembrane helix 2. CONCLUSIONS: Two previously reported biallelic, highly disruptive (nonsense; R17*, in-frame deletion and single amino acid substitution; p.[S115-T117del; A118T]) TRHR mutations have been associated with CCH; however, we describe the first deleterious, missense TRHR defect associated with this phenotype. Importantly, the location of the mutated amino acid (proline 81) highlights the functional importance of the second transmembrane helix in mediating hormone binding and receptor activation. Future identification of other naturally occurring TRHR mutations will likely offer important insights into the molecular basis of ligand binding and activation of TRHR, which are still poorly understood. Endocrine Society 2016-03 2016-01-06 /pmc/articles/PMC4803180/ /pubmed/26735259 http://dx.doi.org/10.1210/jc.2015-3916 Text en https://creativecommons.org/licenses/by/4.0/ This article has been published under the terms of the Creative Commons Attribution License (CC-BY; https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright for this article is retained by the author(s). |
spellingShingle | Special Features Koulouri, O. Nicholas, A. K. Schoenmakers, E. Mokrosinski, J. Lane, F. Cole, T. Kirk, J. Farooqi, I. S. Chatterjee, V. K. Gurnell, M. Schoenmakers, N. A Novel Thyrotropin-Releasing Hormone Receptor Missense Mutation (P81R) in Central Congenital Hypothyroidism |
title | A Novel Thyrotropin-Releasing Hormone Receptor Missense Mutation (P81R) in Central Congenital Hypothyroidism |
title_full | A Novel Thyrotropin-Releasing Hormone Receptor Missense Mutation (P81R) in Central Congenital Hypothyroidism |
title_fullStr | A Novel Thyrotropin-Releasing Hormone Receptor Missense Mutation (P81R) in Central Congenital Hypothyroidism |
title_full_unstemmed | A Novel Thyrotropin-Releasing Hormone Receptor Missense Mutation (P81R) in Central Congenital Hypothyroidism |
title_short | A Novel Thyrotropin-Releasing Hormone Receptor Missense Mutation (P81R) in Central Congenital Hypothyroidism |
title_sort | novel thyrotropin-releasing hormone receptor missense mutation (p81r) in central congenital hypothyroidism |
topic | Special Features |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803180/ https://www.ncbi.nlm.nih.gov/pubmed/26735259 http://dx.doi.org/10.1210/jc.2015-3916 |
work_keys_str_mv | AT koulourio anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT nicholasak anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT schoenmakerse anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT mokrosinskij anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT lanef anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT colet anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT kirkj anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT farooqiis anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT chatterjeevk anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT gurnellm anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT schoenmakersn anovelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT koulourio novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT nicholasak novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT schoenmakerse novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT mokrosinskij novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT lanef novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT colet novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT kirkj novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT farooqiis novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT chatterjeevk novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT gurnellm novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism AT schoenmakersn novelthyrotropinreleasinghormonereceptormissensemutationp81rincentralcongenitalhypothyroidism |