Cargando…

Genetic Diversity and Population Structure of the Rare and Endangered Plant Species Pulsatilla patens (L.) Mill in East Central Europe

Pulsatilla patens s.s. is a one of the most endangered plant species in Europe. The present range of this species in Europe is highly fragmented and the size of the populations has been dramatically reduced in the past 50 years. The rapid disappearance of P. patens localities in Europe has prompted...

Descripción completa

Detalles Bibliográficos
Autores principales: Szczecińska, Monika, Sramko, Gabor, Wołosz, Katarzyna, Sawicki, Jakub
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803199/
https://www.ncbi.nlm.nih.gov/pubmed/27003296
http://dx.doi.org/10.1371/journal.pone.0151730
Descripción
Sumario:Pulsatilla patens s.s. is a one of the most endangered plant species in Europe. The present range of this species in Europe is highly fragmented and the size of the populations has been dramatically reduced in the past 50 years. The rapid disappearance of P. patens localities in Europe has prompted the European Commission to initiate active protection of this critically endangered species. The aim of this study was to estimate the degree and distribution of genetic diversity within European populations of this endangered species. We screened 29 populations of P. patens using a set of six microsatellite primers. The results of our study indicate that the analyzed populations are characterized by low levels of genetic diversity (H(o) = 0.005) and very high levels of inbreeding (F(IS) = 0.90). These results suggest that genetic erosion could be partially responsible for the lower fitness in smaller populations of this species. Private allelic richness was very low, being as low as 0.00 for most populations. Average genetic diversity over loci and mean number of alleles in P. patens populations were significantly correlated with population size, suggesting severe genetic drift. The results of AMOVA point to higher levels of variation within populations than between populations.The results of Structure and PCoA analyses suggest that the genetic structure of the studied P. patens populations fall into three clusters corresponding to geographical regions. The most isolated populations (mostly from Romania) formed a separate group with a homogeneous gene pool located at the southern, steppic part of the distribution range. Baltic, mostly Polish, populations fall into two genetic groups which were not fully compatible with their geographic distribution.Our results indicate the serious genetic depauperation of P. patens in the western part of its range, even hinting at an ongoing extinction vortex. Therefore, special conservation attention is required to maintain the populations of this highly endangered species of European Community interest.