Cargando…
Automatic generation of bioinformatics tools for predicting protein–ligand binding sites
Motivation: Predictive tools that model protein–ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipel...
Autores principales: | Komiyama, Yusuke, Banno, Masaki, Ueki, Kokoro, Saad, Gul, Shimizu, Kentaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803387/ https://www.ncbi.nlm.nih.gov/pubmed/26545824 http://dx.doi.org/10.1093/bioinformatics/btv593 |
Ejemplares similares
-
Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine
por: Yarimizu, Masayuki, et al.
Publicado: (2015) -
Development of a protein–ligand-binding site prediction method based on interaction energy and sequence conservation
por: Tsujikawa, Hiroto, et al.
Publicado: (2016) -
Automatic docking of a small number of ligands into a large number of binding sites
por: Kos, Alexander
Publicado: (2013) -
Automatic generation of 3D motifs for classification of protein binding sites
por: Nebel, Jean-Christophe, et al.
Publicado: (2007) -
Neofunctionalization in Ligand Binding Sites of Ant Olfactory Receptors
por: Saad, Rana, et al.
Publicado: (2018)