Cargando…

Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method

We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangl...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaniber, M., Schraml, K., Regler, A., Bartl, J., Glashagen, G., Flassig, F., Wierzbowski, J., Finley, J. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804333/
https://www.ncbi.nlm.nih.gov/pubmed/27005986
http://dx.doi.org/10.1038/srep23203
_version_ 1782423005649960960
author Kaniber, M.
Schraml, K.
Regler, A.
Bartl, J.
Glashagen, G.
Flassig, F.
Wierzbowski, J.
Finley, J. J.
author_facet Kaniber, M.
Schraml, K.
Regler, A.
Bartl, J.
Glashagen, G.
Flassig, F.
Wierzbowski, J.
Finley, J. J.
author_sort Kaniber, M.
collection PubMed
description We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of [Image: see text] = 4.5 nm [Image: see text] = 2.6 nm[Image: see text] and [Image: see text] = 5.4 nm [Image: see text] = 3.8 nm[Image: see text], respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρ(max) ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities.
format Online
Article
Text
id pubmed-4804333
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48043332016-03-24 Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method Kaniber, M. Schraml, K. Regler, A. Bartl, J. Glashagen, G. Flassig, F. Wierzbowski, J. Finley, J. J. Sci Rep Article We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of [Image: see text] = 4.5 nm [Image: see text] = 2.6 nm[Image: see text] and [Image: see text] = 5.4 nm [Image: see text] = 3.8 nm[Image: see text], respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρ(max) ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities. Nature Publishing Group 2016-03-23 /pmc/articles/PMC4804333/ /pubmed/27005986 http://dx.doi.org/10.1038/srep23203 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Kaniber, M.
Schraml, K.
Regler, A.
Bartl, J.
Glashagen, G.
Flassig, F.
Wierzbowski, J.
Finley, J. J.
Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
title Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
title_full Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
title_fullStr Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
title_full_unstemmed Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
title_short Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
title_sort surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804333/
https://www.ncbi.nlm.nih.gov/pubmed/27005986
http://dx.doi.org/10.1038/srep23203
work_keys_str_mv AT kaniberm surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod
AT schramlk surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod
AT reglera surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod
AT bartlj surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod
AT glashageng surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod
AT flassigf surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod
AT wierzbowskij surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod
AT finleyjj surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod