Cargando…
Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangl...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804333/ https://www.ncbi.nlm.nih.gov/pubmed/27005986 http://dx.doi.org/10.1038/srep23203 |
_version_ | 1782423005649960960 |
---|---|
author | Kaniber, M. Schraml, K. Regler, A. Bartl, J. Glashagen, G. Flassig, F. Wierzbowski, J. Finley, J. J. |
author_facet | Kaniber, M. Schraml, K. Regler, A. Bartl, J. Glashagen, G. Flassig, F. Wierzbowski, J. Finley, J. J. |
author_sort | Kaniber, M. |
collection | PubMed |
description | We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of [Image: see text] = 4.5 nm [Image: see text] = 2.6 nm[Image: see text] and [Image: see text] = 5.4 nm [Image: see text] = 3.8 nm[Image: see text], respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρ(max) ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities. |
format | Online Article Text |
id | pubmed-4804333 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48043332016-03-24 Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method Kaniber, M. Schraml, K. Regler, A. Bartl, J. Glashagen, G. Flassig, F. Wierzbowski, J. Finley, J. J. Sci Rep Article We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of [Image: see text] = 4.5 nm [Image: see text] = 2.6 nm[Image: see text] and [Image: see text] = 5.4 nm [Image: see text] = 3.8 nm[Image: see text], respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρ(max) ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities. Nature Publishing Group 2016-03-23 /pmc/articles/PMC4804333/ /pubmed/27005986 http://dx.doi.org/10.1038/srep23203 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Kaniber, M. Schraml, K. Regler, A. Bartl, J. Glashagen, G. Flassig, F. Wierzbowski, J. Finley, J. J. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method |
title | Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method |
title_full | Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method |
title_fullStr | Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method |
title_full_unstemmed | Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method |
title_short | Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method |
title_sort | surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804333/ https://www.ncbi.nlm.nih.gov/pubmed/27005986 http://dx.doi.org/10.1038/srep23203 |
work_keys_str_mv | AT kaniberm surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod AT schramlk surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod AT reglera surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod AT bartlj surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod AT glashageng surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod AT flassigf surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod AT wierzbowskij surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod AT finleyjj surfaceplasmonresonancespectroscopyofsinglebowtienanoantennasusingadifferentialreflectivitymethod |