Cargando…

microRNA-218 Inhibits Oxygen-induced Retinal Neovascularization via Reducing the Expression of Roundabout 1

BACKGROUND: The mechanisms of pathological retinal neovascularization (RNV) remain unknown. Several microRNAs were reported to be involved in the process of RNV. Oxygen-induced retinopathy (OIR) is a useful model to investigate RNV. Our present work explored the expression and the role of microRNA-1...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Shuang, Kong, Yi-Chun, Sun, Bei, Han, Quan-Hong, Chen, Ying, Wang, Yu-Chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804418/
https://www.ncbi.nlm.nih.gov/pubmed/26960375
http://dx.doi.org/10.4103/0366-6999.178013
Descripción
Sumario:BACKGROUND: The mechanisms of pathological retinal neovascularization (RNV) remain unknown. Several microRNAs were reported to be involved in the process of RNV. Oxygen-induced retinopathy (OIR) is a useful model to investigate RNV. Our present work explored the expression and the role of microRNA-128 (miR-218) in oxygen-induced RNV. METHODS: OIR was used to establish RNV model. The expression level of miR-218 in the retina from OIR mice was assessed by quantitative real-time reverse transcriptase polymerase chain reaction. Fluorescein angiography was performed in retinae of OIR mice, and RNV was quantified by hematoxylin and eosin staining to evaluate the effect of pCDH-CMV-miR-218 intravitreal injection on RNV in OIR mice. Roundabout 1 (Robo1) expression was detected by Western blotting in mouse retinal vascular endothelial cells expressing a high or low level of miR-218 and retinal tissues from OIR mice. Cell migration was evaluated by scratch wound assay. RESULTS: In OIR mice, the expression level of miR-218 was significantly down-regulated (P = 0.006). Retinal Robo1 expression was significantly increased at both mRNA and protein levels (P = 0.001, 0.008; respectively). miR-218 intravitreal injection inhibited retinal angiogenesis in OIR mice, and the restoration of miR-218 in retina led to down-regulation of Robo1. CONCLUSIONS: Our experiments showed that restoration of miR-218 inhibited retinal angiogenesis via targeting Robo1. MiR-218 contributed to the inhibition of retinal angiogenesis and miR-218 might be a new therapeutic target for preventing RNV.