Cargando…
EPIG-Seq: extracting patterns and identifying co-expressed genes from RNA-Seq data
BACKGROUND: RNA sequencing (RNA-Seq) measures genome-wide gene expression. RNA-Seq data is count-based rendering normal distribution models for analysis inappropriate. Normalization of RNA-Seq data to transform the data has limitations which can adversely impact the analysis. Furthermore, there are...
Autores principales: | Li, Jianying, Bushel, Pierre R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804494/ https://www.ncbi.nlm.nih.gov/pubmed/27004791 http://dx.doi.org/10.1186/s12864-016-2584-7 |
Ejemplares similares
-
MicroScope: ChIP-seq and RNA-seq software analysis suite for gene expression heatmaps
por: Khomtchouk, Bohdan B., et al.
Publicado: (2016) -
T-REx: Transcriptome analysis webserver for RNA-seq Expression data
por: de Jong, Anne, et al.
Publicado: (2015) -
Modeling and cleaning RNA-seq data significantly improve detection of differentially expressed genes
por: Deyneko, Igor V., et al.
Publicado: (2022) -
intePareto: an R package for integrative analyses of RNA-Seq and ChIP-Seq data
por: Cao, Yingying, et al.
Publicado: (2020) -
GSVA: gene set variation analysis for microarray and RNA-Seq data
por: Hänzelmann, Sonja, et al.
Publicado: (2013)