Cargando…

Transient analysis of the Erlang A model

We consider the Erlang A model, or [Formula: see text] queue, with Poisson arrivals, exponential service times, and m parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth–death process, for which we ob...

Descripción completa

Detalles Bibliográficos
Autores principales: Knessl, Charles, van Leeuwaarden, Johan S. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804771/
https://www.ncbi.nlm.nih.gov/pubmed/27069412
http://dx.doi.org/10.1007/s00186-015-0498-9
Descripción
Sumario:We consider the Erlang A model, or [Formula: see text] queue, with Poisson arrivals, exponential service times, and m parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth–death process, for which we obtain explicit expressions for the Laplace transforms of the time-dependent distribution and the first passage time. These two transient characteristics were generally presumed to be intractable. Solving for the Laplace transforms involves using Green’s functions and contour integrals related to hypergeometric functions. Our results are specialized to the [Formula: see text] queue, the M / M / m queue, and the M / M / m / m loss model. We also obtain some corresponding results for diffusion approximations to these models.