Cargando…

Transient analysis of the Erlang A model

We consider the Erlang A model, or [Formula: see text] queue, with Poisson arrivals, exponential service times, and m parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth–death process, for which we ob...

Descripción completa

Detalles Bibliográficos
Autores principales: Knessl, Charles, van Leeuwaarden, Johan S. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804771/
https://www.ncbi.nlm.nih.gov/pubmed/27069412
http://dx.doi.org/10.1007/s00186-015-0498-9
_version_ 1782423078738853888
author Knessl, Charles
van Leeuwaarden, Johan S. H.
author_facet Knessl, Charles
van Leeuwaarden, Johan S. H.
author_sort Knessl, Charles
collection PubMed
description We consider the Erlang A model, or [Formula: see text] queue, with Poisson arrivals, exponential service times, and m parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth–death process, for which we obtain explicit expressions for the Laplace transforms of the time-dependent distribution and the first passage time. These two transient characteristics were generally presumed to be intractable. Solving for the Laplace transforms involves using Green’s functions and contour integrals related to hypergeometric functions. Our results are specialized to the [Formula: see text] queue, the M / M / m queue, and the M / M / m / m loss model. We also obtain some corresponding results for diffusion approximations to these models.
format Online
Article
Text
id pubmed-4804771
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-48047712016-04-09 Transient analysis of the Erlang A model Knessl, Charles van Leeuwaarden, Johan S. H. Math Methods Oper Res (Heidelb) Article We consider the Erlang A model, or [Formula: see text] queue, with Poisson arrivals, exponential service times, and m parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth–death process, for which we obtain explicit expressions for the Laplace transforms of the time-dependent distribution and the first passage time. These two transient characteristics were generally presumed to be intractable. Solving for the Laplace transforms involves using Green’s functions and contour integrals related to hypergeometric functions. Our results are specialized to the [Formula: see text] queue, the M / M / m queue, and the M / M / m / m loss model. We also obtain some corresponding results for diffusion approximations to these models. Springer Berlin Heidelberg 2015-08-21 2015 /pmc/articles/PMC4804771/ /pubmed/27069412 http://dx.doi.org/10.1007/s00186-015-0498-9 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Knessl, Charles
van Leeuwaarden, Johan S. H.
Transient analysis of the Erlang A model
title Transient analysis of the Erlang A model
title_full Transient analysis of the Erlang A model
title_fullStr Transient analysis of the Erlang A model
title_full_unstemmed Transient analysis of the Erlang A model
title_short Transient analysis of the Erlang A model
title_sort transient analysis of the erlang a model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804771/
https://www.ncbi.nlm.nih.gov/pubmed/27069412
http://dx.doi.org/10.1007/s00186-015-0498-9
work_keys_str_mv AT knesslcharles transientanalysisoftheerlangamodel
AT vanleeuwaardenjohansh transientanalysisoftheerlangamodel