Cargando…
Methodological issues in current practice may lead to bias in the development of biomarker combinations for predicting acute kidney injury
Individual biomarkers of renal injury are only modestly predictive of acute kidney injury (AKI). Using multiple biomarkers has the potential to improve predictive capacity. In this systematic review, statistical methods of articles developing biomarker combinations to predict acute kidney injury wer...
Autores principales: | Meisner, Allison, Kerr, Kathleen F., Thiessen-Philbrook, Heather, Coca, Steven G., Parikh, Chirag R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805513/ https://www.ncbi.nlm.nih.gov/pubmed/26398494 http://dx.doi.org/10.1038/ki.2015.283 |
Ejemplares similares
-
RiGoR: reporting guidelines to address common sources of bias in risk model development
por: Kerr, Kathleen F, et al.
Publicado: (2015) -
BioPETsurv: Methodology and open source software to evaluate biomarkers for prognostic enrichment of time-to-event clinical trials
por: Cheng, Si, et al.
Publicado: (2020) -
Developing Biomarker Panels to Predict Progression of Acute Kidney Injury After Cardiac Surgery
por: Kerr, Kathleen F., et al.
Publicado: (2019) -
Development of biomarker combinations for postoperative acute kidney injury via Bayesian model selection in a multicenter cohort study
por: Meisner, Allison, et al.
Publicado: (2018) -
Urinalysis findings and urinary kidney injury biomarker concentrations
por: Nadkarni, Girish N., et al.
Publicado: (2017)