Cargando…

Rhodopsin targeted transcriptional silencing by DNA-binding

Transcription factors (TFs) operate by the combined activity of their DNA-binding domains (DBDs) and effector domains (EDs) enabling the coordination of gene expression on a genomic scale. Here we show that in vivo delivery of an engineered DNA-binding protein uncoupled from the repressor domain can...

Descripción completa

Detalles Bibliográficos
Autores principales: Botta, Salvatore, Marrocco, Elena, de Prisco, Nicola, Curion, Fabiola, Renda, Mario, Sofia, Martina, Lupo, Mariangela, Carissimo, Annamaria, Bacci, Maria Laura, Gesualdo, Carlo, Rossi, Settimio, Simonelli, Francesca, Surace, Enrico Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805542/
https://www.ncbi.nlm.nih.gov/pubmed/26974343
http://dx.doi.org/10.7554/eLife.12242
Descripción
Sumario:Transcription factors (TFs) operate by the combined activity of their DNA-binding domains (DBDs) and effector domains (EDs) enabling the coordination of gene expression on a genomic scale. Here we show that in vivo delivery of an engineered DNA-binding protein uncoupled from the repressor domain can produce efficient and gene-specific transcriptional silencing. To interfere with RHODOPSIN (RHO) gain-of-function mutations we engineered the ZF6-DNA-binding protein (ZF6-DB) that targets 20 base pairs (bp) of a RHOcis-regulatory element (CRE) and demonstrate Rho specific transcriptional silencing upon adeno-associated viral (AAV) vector-mediated expression in photoreceptors. The data show that the 20 bp-long genomic DNA sequence is necessary for RHO expression and that photoreceptor delivery of the corresponding cognate synthetic trans-acting factor ZF6-DB without the intrinsic transcriptional repression properties of the canonical ED blocks Rho expression with negligible genome-wide transcript perturbations. The data support DNA-binding-mediated silencing as a novel mode to treat gain-of-function mutations. DOI: http://dx.doi.org/10.7554/eLife.12242.001