Cargando…

The role of metaboreceptor on exercise in hyperthermic environment with college basketball players

The objective of this study is to review physiological differences of college basketball players cardiovascular responses and group IV metaboreceptor interactions appearing post muscular ischemia exercise (PEMI) caused by a static handgrip exercise (SHE). The subjects were placed in a temperature an...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyun-Gook, Kim, Jong-Kyung, Kim, Kyung-Ae, Nho, Hosung, Lee, Sungchul, Chang, Myoung-Jae, Choi, Hyun-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805669/
https://www.ncbi.nlm.nih.gov/pubmed/27066375
http://dx.doi.org/10.1186/s40064-016-1989-8
Descripción
Sumario:The objective of this study is to review physiological differences of college basketball players cardiovascular responses and group IV metaboreceptor interactions appearing post muscular ischemia exercise (PEMI) caused by a static handgrip exercise (SHE). The subjects were placed in a temperature and moisture stabilized indoor environment for 2 h in order to measure blood pressure. For the SHE, maximal voluntary contraction of arms with a relative strength of 50 % of the maximum muscular strength was put into isometric training for 2 min. After completing the exercises, cuffs worn on the arms of the subjects were pressurized up to 200 mmHg by applying PEMI to block the artery and vein. In this way, the cardiovascular responses created by SHE and PEMI were measured. Blood samples of subjects were collected from the vein of each upper arm before SHE and after PEMI to measure the metabolite hormone and catecholamine in the blood. Results from the measurements showed a significant decrease of blood pressure under high temperature environments compared to normal temperature environments. With respect to PEMI, increases in blood pressure under the high temperature environment were significantly lower compared to the normal temperature environment. In conclusion, this study revealed that college basketball players with good physical strength had higher sensitivities of arterial baroreceptor. However, blood pressure was not increased accordingly because the increase of cutaneous vasoconstriction due to stimuli of the metaboreceptor under a high temperature environment could not be compensated by arterial baroreflex due to the increase of total vascular conductance.