Cargando…
A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification
The identification of pollen in an automated way will accelerate different tasks and applications of palynology to aid in, among others, climate change studies, medical allergies calendar, and forensic science. The aim of this paper is to develop a system that automatically captures a hundred micros...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806277/ https://www.ncbi.nlm.nih.gov/pubmed/27034710 http://dx.doi.org/10.1155/2016/5689346 |
_version_ | 1782423209452240896 |
---|---|
author | Tello-Mijares, Santiago Flores, Francisco |
author_facet | Tello-Mijares, Santiago Flores, Francisco |
author_sort | Tello-Mijares, Santiago |
collection | PubMed |
description | The identification of pollen in an automated way will accelerate different tasks and applications of palynology to aid in, among others, climate change studies, medical allergies calendar, and forensic science. The aim of this paper is to develop a system that automatically captures a hundred microscopic images of pollen and classifies them into the 12 different species from Lagunera Region, Mexico. Many times, the pollen is overlapping on the microscopic images, which increases the difficulty for its automated identification and classification. This paper focuses on a method to segment the overlapping pollen. First, the proposed method segments the overlapping pollen. Second, the method separates the pollen based on the mean shift process (100% segmentation) and erosion by H-minima based on the Fibonacci series. Thus, pollen is characterized by its shape, color, and texture for training and evaluating the performance of three classification techniques: random tree forest, multilayer perceptron, and Bayes net. Using the newly developed system, we obtained segmentation results of 100% and classification on top of 96.2% and 96.1% in recall and precision using multilayer perceptron in twofold cross validation. |
format | Online Article Text |
id | pubmed-4806277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-48062772016-03-31 A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification Tello-Mijares, Santiago Flores, Francisco Comput Math Methods Med Research Article The identification of pollen in an automated way will accelerate different tasks and applications of palynology to aid in, among others, climate change studies, medical allergies calendar, and forensic science. The aim of this paper is to develop a system that automatically captures a hundred microscopic images of pollen and classifies them into the 12 different species from Lagunera Region, Mexico. Many times, the pollen is overlapping on the microscopic images, which increases the difficulty for its automated identification and classification. This paper focuses on a method to segment the overlapping pollen. First, the proposed method segments the overlapping pollen. Second, the method separates the pollen based on the mean shift process (100% segmentation) and erosion by H-minima based on the Fibonacci series. Thus, pollen is characterized by its shape, color, and texture for training and evaluating the performance of three classification techniques: random tree forest, multilayer perceptron, and Bayes net. Using the newly developed system, we obtained segmentation results of 100% and classification on top of 96.2% and 96.1% in recall and precision using multilayer perceptron in twofold cross validation. Hindawi Publishing Corporation 2016 2016-03-10 /pmc/articles/PMC4806277/ /pubmed/27034710 http://dx.doi.org/10.1155/2016/5689346 Text en Copyright © 2016 S. Tello-Mijares and F. Flores. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Tello-Mijares, Santiago Flores, Francisco A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification |
title | A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification |
title_full | A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification |
title_fullStr | A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification |
title_full_unstemmed | A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification |
title_short | A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification |
title_sort | novel method for the separation of overlapping pollen species for automated detection and classification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806277/ https://www.ncbi.nlm.nih.gov/pubmed/27034710 http://dx.doi.org/10.1155/2016/5689346 |
work_keys_str_mv | AT tellomijaressantiago anovelmethodfortheseparationofoverlappingpollenspeciesforautomateddetectionandclassification AT floresfrancisco anovelmethodfortheseparationofoverlappingpollenspeciesforautomateddetectionandclassification AT tellomijaressantiago novelmethodfortheseparationofoverlappingpollenspeciesforautomateddetectionandclassification AT floresfrancisco novelmethodfortheseparationofoverlappingpollenspeciesforautomateddetectionandclassification |