Cargando…
Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods
Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, w...
Autores principales: | Serag, Ahmed, Blesa, Manuel, Moore, Emma J., Pataky, Rozalia, Sparrow, Sarah A., Wilkinson, A. G., Macnaught, Gillian, Semple, Scott I., Boardman, James P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806304/ https://www.ncbi.nlm.nih.gov/pubmed/27010238 http://dx.doi.org/10.1038/srep23470 |
Ejemplares similares
-
Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood
por: Blesa, Manuel, et al.
Publicado: (2016) -
SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests
por: Serag, Ahmed, et al.
Publicado: (2017) -
Diffusion MRI parameters of corpus callosum and corticospinal tract in neonates: Comparison between region-of-interest and whole tract averaged measurements
por: Sparrow, Sarah A., et al.
Publicado: (2018) -
Tract shape modeling detects changes associated with preterm birth and neuroprotective treatment effects
por: Anblagan, Devasuda, et al.
Publicado: (2015) -
Association between preterm brain injury and exposure to chorioamnionitis during fetal life
por: Anblagan, Devasuda, et al.
Publicado: (2016)