Cargando…
An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes
The mechanisms for the transition from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) chromatin configuration during oocyte growth/maturation are unclear. By manipulating enzyme activities and measuring important molecules using small-follicle pig oocytes with a high proportion of NSN c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806380/ https://www.ncbi.nlm.nih.gov/pubmed/27009903 http://dx.doi.org/10.1038/srep23555 |
Sumario: | The mechanisms for the transition from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) chromatin configuration during oocyte growth/maturation are unclear. By manipulating enzyme activities and measuring important molecules using small-follicle pig oocytes with a high proportion of NSN configuration and an extended germinal vesicle stage in vitro, this study has the first time up-to-date established the essential role for intra-oocyte mitogen-activated protein kinase (MAPK) in the NSN-to-SN transition. Within the oocyte in 1–2 mm follicles, a cAMP decline activates MAPK, which prevents the NSN-to-SN transition by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) while inhibiting histone deacetylase (HDAC). In cumulus cells of 1–2 mm follicles, a lower level of estradiol and oocyte-derived paracrine factor (ODPF) reduces natriuretic peptide receptor 2 (NPR2) while enhancing FSH and cAMP actions. FSH elevates cAMP levels, which decreases NPR2 while activating MAPK. MAPK closes the gap junctions, which, together with the NPR2 decrease, reduces cyclic guanosine monophosphate (cGMP) delivery leading to the cAMP decline within oocytes. In 3–6 mm follicles, a higher level of estradiol and ODPF and a FSH shortage initiate a reversion of the above events leading to MAPK inactivation and NSN-to-SN transition within oocytes. |
---|