Cargando…

Antibacterial effect of silver (I) carbohydrate complexes on oral pathogenic key species in vitro

BACKGROUND: It was the aim of this study to evaluate the antibacterial impact of two silver(I) carbohydrate complexes with tripodal thioglycosides, namely tris[2-(β-D-thio-glucopyranosyl)ethyl]-amine-silver(I)-nitrate (3) and tris[2-(α-D-thio-manno-pyranosyl)ethyl]-amine-silver(I)-nitrate (4), on fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Reise, Markus, Gottschaldt, Michael, Matz, Carina, Völpel, Andrea, Jandt, Klaus D., Schubert, Ulrich S., Sigusch, Bernd W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806493/
https://www.ncbi.nlm.nih.gov/pubmed/27009305
http://dx.doi.org/10.1186/s12903-016-0201-4
Descripción
Sumario:BACKGROUND: It was the aim of this study to evaluate the antibacterial impact of two silver(I) carbohydrate complexes with tripodal thioglycosides, namely tris[2-(β-D-thio-glucopyranosyl)ethyl]-amine-silver(I)-nitrate (3) and tris[2-(α-D-thio-manno-pyranosyl)ethyl]-amine-silver(I)-nitrate (4), on five oral pathogenic bacterial strains. Furthermore, cytocompatibility was tested using human gingival fibroblasts (HGF). METHODS: Minimum inhibitory concentrations (MIC) were determined on five oral pathogenic bacterial strains by using the broth microdilution method: Fusobacterium nucleatum (ATCC 10953), Aggregatibacter actinomycetemcomitans (ATCC 33384), Porphyromonas gingivalis (ATCC 33277), Streptococcus mutans (ATCC 25175) and Enterococcus faecalis (DSMZ 20376). Furthermore, antimicrobial efficiency was tested using agar diffusion assays. To evaluate cytocompatibility, human gingival fibroblasts (HGFs) were exposed to AgNO(3) and complex 3 followed by a live/dead staining. RESULTS: MIC of the silver(I) complexes ranged between 0.625 and 5.0 mmol/L. The silver complexes 3 and 4 showed higher antibacterial efficiency against all tested species than AgNO(3). Antibacterial efficiency of complexes 3 and 4 on F. nucleatum (≥18 mm) and A. actinomycetemcomitans (≥23 mm) was more pronounced than against P. gingivalis (≥15 mm). Complex 3 (20 mM) induced the largest inhibition zones (30 to 31 mm) on Gram-negative strains. For Gram-positive strains, the largest inhibition zones were achieved by complex 3 (20 mM/S. mutans: 28 mm, E. faecalis: 18 mm). Complex 3 had a lower cytotoxic impact on HGFs compared to AgNO(3) by the power of ten. CONCLUSIONS: The findings suggest that silver(I) carbohydrate complexes 3 and 4 might function as novel antimicrobial agents for the treatment of periodontal, carious or endodontic diseases.