Cargando…
Does the choice of nucleotide substitution models matter topologically?
BACKGROUND: In the context of a master level programming practical at the computer science department of the Karlsruhe Institute of Technology, we developed and make available an open-source code for testing all 203 possible nucleotide substitution models in the Maximum Likelihood (ML) setting under...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806516/ https://www.ncbi.nlm.nih.gov/pubmed/27009141 http://dx.doi.org/10.1186/s12859-016-0985-x |
_version_ | 1782423254292496384 |
---|---|
author | Hoff, Michael Orf, Stefan Riehm, Benedikt Darriba, Diego Stamatakis, Alexandros |
author_facet | Hoff, Michael Orf, Stefan Riehm, Benedikt Darriba, Diego Stamatakis, Alexandros |
author_sort | Hoff, Michael |
collection | PubMed |
description | BACKGROUND: In the context of a master level programming practical at the computer science department of the Karlsruhe Institute of Technology, we developed and make available an open-source code for testing all 203 possible nucleotide substitution models in the Maximum Likelihood (ML) setting under the common Akaike, corrected Akaike, and Bayesian information criteria. We address the question if model selection matters topologically, that is, if conducting ML inferences under the optimal, instead of a standard General Time Reversible model, yields different tree topologies. We also assess, to which degree models selected and trees inferred under the three standard criteria (AIC, AICc, BIC) differ. Finally, we assess if the definition of the sample size (#sites versus #sites × #taxa) yields different models and, as a consequence, different tree topologies. RESULTS: We find that, all three factors (by order of impact: nucleotide model selection, information criterion used, sample size definition) can yield topologically substantially different final tree topologies (topological difference exceeding 10 %) for approximately 5 % of the tree inferences conducted on the 39 empirical datasets used in our study. CONCLUSIONS: We find that, using the best-fit nucleotide substitution model may change the final ML tree topology compared to an inference under a default GTR model. The effect is less pronounced when comparing distinct information criteria. Nonetheless, in some cases we did obtain substantial topological differences. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-0985-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4806516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48065162016-03-25 Does the choice of nucleotide substitution models matter topologically? Hoff, Michael Orf, Stefan Riehm, Benedikt Darriba, Diego Stamatakis, Alexandros BMC Bioinformatics Research Article BACKGROUND: In the context of a master level programming practical at the computer science department of the Karlsruhe Institute of Technology, we developed and make available an open-source code for testing all 203 possible nucleotide substitution models in the Maximum Likelihood (ML) setting under the common Akaike, corrected Akaike, and Bayesian information criteria. We address the question if model selection matters topologically, that is, if conducting ML inferences under the optimal, instead of a standard General Time Reversible model, yields different tree topologies. We also assess, to which degree models selected and trees inferred under the three standard criteria (AIC, AICc, BIC) differ. Finally, we assess if the definition of the sample size (#sites versus #sites × #taxa) yields different models and, as a consequence, different tree topologies. RESULTS: We find that, all three factors (by order of impact: nucleotide model selection, information criterion used, sample size definition) can yield topologically substantially different final tree topologies (topological difference exceeding 10 %) for approximately 5 % of the tree inferences conducted on the 39 empirical datasets used in our study. CONCLUSIONS: We find that, using the best-fit nucleotide substitution model may change the final ML tree topology compared to an inference under a default GTR model. The effect is less pronounced when comparing distinct information criteria. Nonetheless, in some cases we did obtain substantial topological differences. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-0985-x) contains supplementary material, which is available to authorized users. BioMed Central 2016-03-24 /pmc/articles/PMC4806516/ /pubmed/27009141 http://dx.doi.org/10.1186/s12859-016-0985-x Text en © Hoffet al. 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Hoff, Michael Orf, Stefan Riehm, Benedikt Darriba, Diego Stamatakis, Alexandros Does the choice of nucleotide substitution models matter topologically? |
title | Does the choice of nucleotide substitution models matter topologically? |
title_full | Does the choice of nucleotide substitution models matter topologically? |
title_fullStr | Does the choice of nucleotide substitution models matter topologically? |
title_full_unstemmed | Does the choice of nucleotide substitution models matter topologically? |
title_short | Does the choice of nucleotide substitution models matter topologically? |
title_sort | does the choice of nucleotide substitution models matter topologically? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806516/ https://www.ncbi.nlm.nih.gov/pubmed/27009141 http://dx.doi.org/10.1186/s12859-016-0985-x |
work_keys_str_mv | AT hoffmichael doesthechoiceofnucleotidesubstitutionmodelsmattertopologically AT orfstefan doesthechoiceofnucleotidesubstitutionmodelsmattertopologically AT riehmbenedikt doesthechoiceofnucleotidesubstitutionmodelsmattertopologically AT darribadiego doesthechoiceofnucleotidesubstitutionmodelsmattertopologically AT stamatakisalexandros doesthechoiceofnucleotidesubstitutionmodelsmattertopologically |