Cargando…
Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder
Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical...
Autores principales: | Zhao, Guangjun, Wang, Xuchu, Niu, Yanmin, Tan, Liwen, Zhang, Shao-Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807075/ https://www.ncbi.nlm.nih.gov/pubmed/27057543 http://dx.doi.org/10.1155/2016/5284586 |
Ejemplares similares
-
New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation
por: Wang, Xuchu, et al.
Publicado: (2014) -
DFTSA-Net: Deep Feature Transfer-Based Stacked Autoencoder Network for DME Diagnosis
por: Atteia, Ghada, et al.
Publicado: (2021) -
Myocardium Detection by Deep SSAE Feature and Within-Class Neighborhood Preserved Support Vector Classifier and Regressor
por: Niu, Yanmin, et al.
Publicado: (2019) -
Optimal Deep Stacked Sparse Autoencoder Based Osteosarcoma Detection and Classification Model
por: Fakieh, Bahjat, et al.
Publicado: (2022) -
Enhancing the Visibility of Delamination during Pulsed Thermography of Carbon Fiber-Reinforced Plates Using a Stacked Autoencoder
por: Xu, Changhang, et al.
Publicado: (2018)