Cargando…
Onset, timing, and exposure therapy of stress disorders: mechanistic insight from a mathematical model of oscillating neuroendocrine dynamics
BACKGROUND: The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates numerous physiological processes. Disruptions in the activity of the HPA axis are correlated with stress-related diseases such as post-traumatic stress disorder (PTSD) and major depressive disorder. I...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807591/ https://www.ncbi.nlm.nih.gov/pubmed/27013324 http://dx.doi.org/10.1186/s13062-016-0117-6 |
Sumario: | BACKGROUND: The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates numerous physiological processes. Disruptions in the activity of the HPA axis are correlated with stress-related diseases such as post-traumatic stress disorder (PTSD) and major depressive disorder. In this paper, we characterize “normal” and “diseased” states of the HPA axis as basins of attraction of a dynamical system describing the inhibition of peptide hormones such as corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) by circulating glucocorticoids such as cortisol (CORT). RESULTS: In addition to including key physiological features such as ultradian oscillations in cortisol levels and self-upregulation of CRH neuron activity, our model distinguishes the relatively slow process of cortisol-mediated CRH biosynthesis from rapid trans-synaptic effects that regulate the CRH secretion process. We show that the slow component of the negative feedback allows external stress-induced reversible transitions between “normal” and “diseased” states in novel intensity-, duration-, and timing-dependent ways. CONCLUSION: Our two-step negative feedback model suggests a mechanism whereby exposure therapy of stress disorders such as PTSD may act to normalize downstream dysregulation of the HPA axis. Our analysis provides a causative rationale for improving treatments and guiding the design of new protocols. REVIEWERS: This article was reviewed by Dr. Daniel Coombs, Dr. Yang Kuang, and Dr. Ha Youn Lee. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13062-016-0117-6) contains supplementary material, which is available to authorized users. |
---|