Cargando…

Rapid Emergence and Evolution of Staphylococcus aureus Clones Harboring fusC-Containing Staphylococcal Cassette Chromosome Elements

The prevalence of fusidic acid (FA) resistance among Staphylococcus aureus strains in New Zealand (NZ) is among the highest reported globally, with a recent study describing a resistance rate of approximately 28%. Three FA-resistant S. aureus clones (ST5 MRSA, ST1 MSSA, and ST1 MRSA) have emerged ov...

Descripción completa

Detalles Bibliográficos
Autores principales: Baines, Sarah L., Howden, Benjamin P., Heffernan, Helen, Stinear, Timothy P., Carter, Glen P., Seemann, Torsten, Kwong, Jason C., Ritchie, Stephen R., Williamson, Deborah A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808225/
https://www.ncbi.nlm.nih.gov/pubmed/26856837
http://dx.doi.org/10.1128/AAC.03020-15
Descripción
Sumario:The prevalence of fusidic acid (FA) resistance among Staphylococcus aureus strains in New Zealand (NZ) is among the highest reported globally, with a recent study describing a resistance rate of approximately 28%. Three FA-resistant S. aureus clones (ST5 MRSA, ST1 MSSA, and ST1 MRSA) have emerged over the past decade and now predominate in NZ, and in all three clones FA resistance is mediated by the fusC gene. In particular, ST5 MRSA has rapidly become the dominant MRSA clone in NZ, although the origin of FA-resistant ST5 MRSA has not been explored, and the genetic context of fusC in FA-resistant NZ isolates is unknown. To better understand the rapid emergence of FA-resistant S. aureus, we used population-based comparative genomics to characterize a collection of FA-resistant and FA-susceptible isolates from NZ. FA-resistant NZ ST5 MRSA displayed minimal genetic diversity and represented a phylogenetically distinct clade within a global population model of clonal complex 5 (CC5) S. aureus. In all lineages, fusC was invariably located within staphylococcal cassette chromosome (SCC) elements, suggesting that SCC-mediated horizontal transfer is the primary mechanism of fusC dissemination. The genotypic association of fusC with mecA has important implications for the emergence of MRSA clones in populations with high usage of fusidic acid. In addition, we found that fusC was colocated with a recently described virulence factor (tirS) in dominant NZ S. aureus clones, suggesting a fitness advantage. This study points to the likely molecular mechanisms responsible for the successful emergence and spread of FA-resistant S. aureus.