Cargando…
Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells
Purpose. Type 2 diabetes consists of progressive hyperglycemia and insulin resistance, which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study we investigated the effect of Gelam honey and quercetin on the oxidative stress-induced inflammatory pat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808561/ https://www.ncbi.nlm.nih.gov/pubmed/27034691 http://dx.doi.org/10.1155/2016/5843615 |
_version_ | 1782423495299301376 |
---|---|
author | Safi, Sher Zaman Batumalaie, Kalaivani Qvist, Rajes Mohd Yusof, Kamaruddin Ismail, Ikram Shah |
author_facet | Safi, Sher Zaman Batumalaie, Kalaivani Qvist, Rajes Mohd Yusof, Kamaruddin Ismail, Ikram Shah |
author_sort | Safi, Sher Zaman |
collection | PubMed |
description | Purpose. Type 2 diabetes consists of progressive hyperglycemia and insulin resistance, which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study we investigated the effect of Gelam honey and quercetin on the oxidative stress-induced inflammatory pathways and the proinflammatory cytokines. Methods. HIT-T15 cells were cultured and preincubated with the extract of Gelam honey (20, 40, 60, and 80 μg/mL), as well as quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM glucose. Results. HIT-T15 cells cultured under hyperglycemic condition showed a significant increase in the inflammatory pathways by phosphorylating JNK, IKK-β, and IRS-1 at Ser307 (p < 0.05). There was a significant decrease in the phosphorylation of Akt at Ser473 (p < 0.05). Pretreatment with Gelam honey and quercetin reduced the expression of phosphorylated JNK, IKK-β, and IRS-1, thereby significantly reducing the expression of proinflammatory cytokines like TNF-α, IL-6, and IL-1β (p < 0.05). At the same time there was a significant increase in the phosphorylated Akt showing the protective effects against inflammation and insulin resistance (p < 0.05). In conclusion, our data suggest the potential use of the extract from Gelam honey and quercetin in modulating the inflammation induced insulin signaling pathways. |
format | Online Article Text |
id | pubmed-4808561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-48085612016-03-31 Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells Safi, Sher Zaman Batumalaie, Kalaivani Qvist, Rajes Mohd Yusof, Kamaruddin Ismail, Ikram Shah Evid Based Complement Alternat Med Research Article Purpose. Type 2 diabetes consists of progressive hyperglycemia and insulin resistance, which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study we investigated the effect of Gelam honey and quercetin on the oxidative stress-induced inflammatory pathways and the proinflammatory cytokines. Methods. HIT-T15 cells were cultured and preincubated with the extract of Gelam honey (20, 40, 60, and 80 μg/mL), as well as quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM glucose. Results. HIT-T15 cells cultured under hyperglycemic condition showed a significant increase in the inflammatory pathways by phosphorylating JNK, IKK-β, and IRS-1 at Ser307 (p < 0.05). There was a significant decrease in the phosphorylation of Akt at Ser473 (p < 0.05). Pretreatment with Gelam honey and quercetin reduced the expression of phosphorylated JNK, IKK-β, and IRS-1, thereby significantly reducing the expression of proinflammatory cytokines like TNF-α, IL-6, and IL-1β (p < 0.05). At the same time there was a significant increase in the phosphorylated Akt showing the protective effects against inflammation and insulin resistance (p < 0.05). In conclusion, our data suggest the potential use of the extract from Gelam honey and quercetin in modulating the inflammation induced insulin signaling pathways. Hindawi Publishing Corporation 2016 2016-03-13 /pmc/articles/PMC4808561/ /pubmed/27034691 http://dx.doi.org/10.1155/2016/5843615 Text en Copyright © 2016 Sher Zaman Safi et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Safi, Sher Zaman Batumalaie, Kalaivani Qvist, Rajes Mohd Yusof, Kamaruddin Ismail, Ikram Shah Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells |
title | Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells |
title_full | Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells |
title_fullStr | Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells |
title_full_unstemmed | Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells |
title_short | Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells |
title_sort | gelam honey attenuates the oxidative stress-induced inflammatory pathways in pancreatic hamster cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808561/ https://www.ncbi.nlm.nih.gov/pubmed/27034691 http://dx.doi.org/10.1155/2016/5843615 |
work_keys_str_mv | AT safisherzaman gelamhoneyattenuatestheoxidativestressinducedinflammatorypathwaysinpancreatichamstercells AT batumalaiekalaivani gelamhoneyattenuatestheoxidativestressinducedinflammatorypathwaysinpancreatichamstercells AT qvistrajes gelamhoneyattenuatestheoxidativestressinducedinflammatorypathwaysinpancreatichamstercells AT mohdyusofkamaruddin gelamhoneyattenuatestheoxidativestressinducedinflammatorypathwaysinpancreatichamstercells AT ismailikramshah gelamhoneyattenuatestheoxidativestressinducedinflammatorypathwaysinpancreatichamstercells |