Cargando…

A novel M2e-multiple antigenic peptide providing heterologous protection in mice

Swine influenza viruses (SwIVs) cause considerable morbidity and mortality in domestic pigs, resulting in a significant economic burden. Moreover, pigs have been considered to be a possible mixing vessel in which novel strains loom. Here, we developed and evaluated a novel M2e-multiple antigenic pep...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Feng, Ma, Ji-Hong, Yu, Hai, Yang, Fu-Ru, Huang, Meng, Zhou, Yan-Jun, Li, Ze-Jun, Wang, Xiu-Hui, Li, Guo-Xin, Jiang, Yi-Feng, Tong, Wu, Tong, Guang-Zhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Veterinary Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808646/
https://www.ncbi.nlm.nih.gov/pubmed/27051342
http://dx.doi.org/10.4142/jvs.2016.17.1.71
Descripción
Sumario:Swine influenza viruses (SwIVs) cause considerable morbidity and mortality in domestic pigs, resulting in a significant economic burden. Moreover, pigs have been considered to be a possible mixing vessel in which novel strains loom. Here, we developed and evaluated a novel M2e-multiple antigenic peptide (M2e-MAP) as a supplemental antigen for inactivated H3N2 vaccine to provide cross-protection against two main subtypes of SwIVs, H1N1 and H3N2. The novel tetra-branched MAP was constructed by fusing four copies of M2e to one copy of foreign T helper cell epitopes. A high-yield reassortant H3N2 virus was generated by plasmid based reverse genetics. The efficacy of the novel H3N2 inactivated vaccines with or without M2e-MAP supplementation was evaluated in a mouse model. M2e-MAP conjugated vaccine induced strong antibody responses in mice. Complete protection against the heterologous swine H1N1 virus was observed in mice vaccinated with M2e-MAP combined vaccine. Moreover, this novel peptide confers protection against lethal challenge of A/Puerto Rico/8/34 (H1N1). Taken together, our results suggest the combined immunization of reassortant inactivated H3N2 vaccine and the novel M2e-MAP provided cross-protection against swine and human viruses and may serve as a promising approach for influenza vaccine development.