Cargando…
Blowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry
The blowup phenomenon of solutions is investigated for the initial-boundary value problem (IBVP) of the N-dimensional Euler equations with spherical symmetry. We first show that there are only trivial solutions when the velocity is of the form c(t)|x|(α−1) x + b(t)(x/|x|) for any value of α ≠ 1 or a...
Autores principales: | Cheung, Ka Luen, Wong, Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808830/ https://www.ncbi.nlm.nih.gov/pubmed/27066528 http://dx.doi.org/10.1155/2016/3781760 |
Ejemplares similares
-
Perturbational blowup solutions to the compressible Euler equations with damping
por: Cheung, Ka Luen
Publicado: (2016) -
Blowup Phenomena for the Compressible Euler and Euler-Poisson Equations with Initial Functional Conditions
por: Wong, Sen, et al.
Publicado: (2014) -
Stabilities for Nonisentropic Euler-Poisson Equations
por: Cheung, Ka Luen, et al.
Publicado: (2015) -
Perturbational Blowup Solutions to the Two-Component Dullin-Gottwald-Holm System
por: Cheung, Ka Luen
Publicado: (2016) -
Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates
por: Constantin, A., et al.
Publicado: (2017)