Cargando…
n-3 Fatty Acid Supplementation and Leukocyte Telomere Length in Patients with Chronic Kidney Disease
DNA telomere shortening associates with the age-related increase cardiovascular disease (CVD) risk. Reducing oxidative stress, could modify telomere erosion during cell replication, and CVD risk in patients with chronic kidney disease (CKD). The effect of n-3 fatty acids and coenzyme Q10 (CoQ) on te...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808901/ https://www.ncbi.nlm.nih.gov/pubmed/27007392 http://dx.doi.org/10.3390/nu8030175 |
Sumario: | DNA telomere shortening associates with the age-related increase cardiovascular disease (CVD) risk. Reducing oxidative stress, could modify telomere erosion during cell replication, and CVD risk in patients with chronic kidney disease (CKD). The effect of n-3 fatty acids and coenzyme Q10 (CoQ) on telomere length was studied in a double-blind placebo-controlled trial in CKD. Eighty-five CKD patients were randomized to: n-3 fatty acids (4 g); CoQ (200 mg); both supplements; or control (4 g olive oil), daily for 8 weeks. Telomere length was measured in neutrophils and peripheral blood mononuclear cells (PBMC) at baseline and 8 weeks, with and without correction for cell counts. Main and interactive effects of n-3 fatty acids and CoQ on telomere length were assessed adjusting for baseline values. F(2)-isoprostanes were measured as markers of oxidative stress. There was no effect of n-3 fatty acids or CoQ on neutrophil or PBMC telomere length. However, telomere length corrected for neutrophil count was increased after n-3 fatty acids (p = 0.015). Post-intervention plasma F(2)-isoprostanes were negative predictors of post-intervention telomere length corrected for neutrophil count (p = 0.025).The effect of n-3 fatty acids to increased telomere length corrected for neutrophil count may relate to reduced oxidative stress and increased clearance of neutrophils with shorter telomeres from the circulation. This may be a novel mechanism of modifying CVD risk in CKD patients. |
---|