Cargando…
A Study on the Chemical Compositions of the Yinqiaosan (Lonicerae and Forsythiae Powder) at Different Time of Later-decoction by Gas Chromatography Mass Spectrometry
BACKGROUND: Yinqiaosan (Lonicerae and Forsythiae Powder), as a famous prescription of Dr. Wu Jutong in Qing dynasty of China, has the effects of diaphoresis cooling, fire-purging, and detoxicaton. It is mainly used in the treatment of influenza, hand-foot-mouth disease, esophagitis, pneumonia, acute...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809168/ https://www.ncbi.nlm.nih.gov/pubmed/27076750 http://dx.doi.org/10.4103/0973-1296.177911 |
Sumario: | BACKGROUND: Yinqiaosan (Lonicerae and Forsythiae Powder), as a famous prescription of Dr. Wu Jutong in Qing dynasty of China, has the effects of diaphoresis cooling, fire-purging, and detoxicaton. It is mainly used in the treatment of influenza, hand-foot-mouth disease, esophagitis, pneumonia, acute tonsillitis, mumps, and other viral infections. It is one of the widely used traditional Chinese medicine prescriptions with proven curative effects in clinical use. OBJECTIVE: To research the material basis of Yinqiaosan decoction when decocting mint, herba schizonepetae in different length of later-decoction time, to find the influence on volatile components of Yinqiaosan decoction decocted later in different length of time, to lay the foundation to further clarify the after-decoction mechanism of Yinqiaosan, and the specification of Yinqiaosan decoction process. MATERIALS AND METHODS: Gas chromatography mass spectrometry method is used to analyze the volatile components of Yinqiaosan decoction samples decocted for 0, 3, 5, 8, and 10 min. RESULTS: Later-decocting mint and herba schizonepetae at different time when decocting Yinqiaosan had a significant influence on the volatile components of the solution. 54 different chemical components were identified: 25 were identified when later-decocting the sample for 3 min; 13 were identified when later-decocting the sample for 5 min; 11 were identified when later-decocting the sample for 8 min; 7 were identified when later-decocting the sample for 10 min; and 26 were identified when later-decocting the sample for 0 min. There were more volatile components in the sample after-decocted for 3 min. A total of 54 different chemical components were identified in different later-decocting solution samples. These components form the basis of the Yinqiaosan drug effect. CONCLUSIONS: The length of later-decoction time of mint and herba schizonepetae was confirmed to be 3 min when decocting Yinqiaosan. SUMMARY: Later-decocting mint and herba schizonepetae at different time had a significant influence on the volatile components of the solution. Fifty-four different chemical components were identified in different later-decocting solution samples. There were more volatile components in the sample after-decocted for 3 min. The volatile components content was high. These components form the important basis of the Yinqiaosan drug effect. Total ion flow diagram of volatile oils in the Yinqiaosan sample with mint, herba schizonepetae after 3 min decoction. Abbreviations used: GC-MS: Gas chromatography mass spectrometry, TCM: Traditional Chinese medicine. |
---|