Cargando…
Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome
Forkhead box F1 (FOXF1), a member of the forkhead transcription factor superfamily, plays critical roles in the progression of certain types of cancers. However, the expression and function of FOXF1 in human hepatocellular carcinoma (HCC) are still unclear. Quantitative real-time reverse transcripti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809324/ https://www.ncbi.nlm.nih.gov/pubmed/27042124 http://dx.doi.org/10.2147/OTT.S95002 |
_version_ | 1782423619278733312 |
---|---|
author | Zhao, Zhen-guo Wang, De-qiang Hu, De-fei Li, You-sheng Liu, Shuang-hai |
author_facet | Zhao, Zhen-guo Wang, De-qiang Hu, De-fei Li, You-sheng Liu, Shuang-hai |
author_sort | Zhao, Zhen-guo |
collection | PubMed |
description | Forkhead box F1 (FOXF1), a member of the forkhead transcription factor superfamily, plays critical roles in the progression of certain types of cancers. However, the expression and function of FOXF1 in human hepatocellular carcinoma (HCC) are still unclear. Quantitative real-time reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry detected the relatively lower expression status of FOXF1 in HCC cases. Soft agar and transwell assays clearly demonstrated that FOXF1-knockdown cells showed significantly increased in vitro cell tumorigenesis and invasion, and FOXF1-overexpressing cells had significantly reduced growth and invasion potential. Our study also examined the role of FOXF1 in HCC cell stemness by sphere formation, aldehyde dehydrogenase (ALDH1) activity, and CD44/133-positive cell analysis. Enforced FOXF1 expression decreased HCC cell stemness, and the downregulation of FOXF1 promoted cancer cell stemness. The in vivo study showed that overexpressed FOXF1 inhibits nude mouse tumorigenicity with downregulation of CD44 and proliferating cell nuclear antigen. More importantly, loss of FOXF1 expression was linked to poor overall survival time by Kaplan–Meier analysis. |
format | Online Article Text |
id | pubmed-4809324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-48093242016-04-01 Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome Zhao, Zhen-guo Wang, De-qiang Hu, De-fei Li, You-sheng Liu, Shuang-hai Onco Targets Ther Original Research Forkhead box F1 (FOXF1), a member of the forkhead transcription factor superfamily, plays critical roles in the progression of certain types of cancers. However, the expression and function of FOXF1 in human hepatocellular carcinoma (HCC) are still unclear. Quantitative real-time reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry detected the relatively lower expression status of FOXF1 in HCC cases. Soft agar and transwell assays clearly demonstrated that FOXF1-knockdown cells showed significantly increased in vitro cell tumorigenesis and invasion, and FOXF1-overexpressing cells had significantly reduced growth and invasion potential. Our study also examined the role of FOXF1 in HCC cell stemness by sphere formation, aldehyde dehydrogenase (ALDH1) activity, and CD44/133-positive cell analysis. Enforced FOXF1 expression decreased HCC cell stemness, and the downregulation of FOXF1 promoted cancer cell stemness. The in vivo study showed that overexpressed FOXF1 inhibits nude mouse tumorigenicity with downregulation of CD44 and proliferating cell nuclear antigen. More importantly, loss of FOXF1 expression was linked to poor overall survival time by Kaplan–Meier analysis. Dove Medical Press 2016-03-23 /pmc/articles/PMC4809324/ /pubmed/27042124 http://dx.doi.org/10.2147/OTT.S95002 Text en © 2016 Zhao et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Zhao, Zhen-guo Wang, De-qiang Hu, De-fei Li, You-sheng Liu, Shuang-hai Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome |
title | Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome |
title_full | Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome |
title_fullStr | Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome |
title_full_unstemmed | Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome |
title_short | Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome |
title_sort | decreased foxf1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809324/ https://www.ncbi.nlm.nih.gov/pubmed/27042124 http://dx.doi.org/10.2147/OTT.S95002 |
work_keys_str_mv | AT zhaozhenguo decreasedfoxf1promoteshepatocellularcarcinomatumorigenesisinvasionandstemnessandisassociatedwithpoorclinicaloutcome AT wangdeqiang decreasedfoxf1promoteshepatocellularcarcinomatumorigenesisinvasionandstemnessandisassociatedwithpoorclinicaloutcome AT hudefei decreasedfoxf1promoteshepatocellularcarcinomatumorigenesisinvasionandstemnessandisassociatedwithpoorclinicaloutcome AT liyousheng decreasedfoxf1promoteshepatocellularcarcinomatumorigenesisinvasionandstemnessandisassociatedwithpoorclinicaloutcome AT liushuanghai decreasedfoxf1promoteshepatocellularcarcinomatumorigenesisinvasionandstemnessandisassociatedwithpoorclinicaloutcome |