Cargando…

Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks

The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account t...

Descripción completa

Detalles Bibliográficos
Autores principales: Asteris, Panagiotis G., Tsaris, Athanasios K., Cavaleri, Liborio, Repapis, Constantinos C., Papalou, Angeliki, Di Trapani, Fabio, Karypidis, Dimitrios F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809391/
https://www.ncbi.nlm.nih.gov/pubmed/27066069
http://dx.doi.org/10.1155/2016/5104907
_version_ 1782423628839649280
author Asteris, Panagiotis G.
Tsaris, Athanasios K.
Cavaleri, Liborio
Repapis, Constantinos C.
Papalou, Angeliki
Di Trapani, Fabio
Karypidis, Dimitrios F.
author_facet Asteris, Panagiotis G.
Tsaris, Athanasios K.
Cavaleri, Liborio
Repapis, Constantinos C.
Papalou, Angeliki
Di Trapani, Fabio
Karypidis, Dimitrios F.
author_sort Asteris, Panagiotis G.
collection PubMed
description The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value.
format Online
Article
Text
id pubmed-4809391
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-48093912016-04-10 Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks Asteris, Panagiotis G. Tsaris, Athanasios K. Cavaleri, Liborio Repapis, Constantinos C. Papalou, Angeliki Di Trapani, Fabio Karypidis, Dimitrios F. Comput Intell Neurosci Research Article The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value. Hindawi Publishing Corporation 2016 2015-12-28 /pmc/articles/PMC4809391/ /pubmed/27066069 http://dx.doi.org/10.1155/2016/5104907 Text en Copyright © 2016 Panagiotis G. Asteris et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Asteris, Panagiotis G.
Tsaris, Athanasios K.
Cavaleri, Liborio
Repapis, Constantinos C.
Papalou, Angeliki
Di Trapani, Fabio
Karypidis, Dimitrios F.
Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks
title Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks
title_full Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks
title_fullStr Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks
title_full_unstemmed Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks
title_short Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks
title_sort prediction of the fundamental period of infilled rc frame structures using artificial neural networks
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809391/
https://www.ncbi.nlm.nih.gov/pubmed/27066069
http://dx.doi.org/10.1155/2016/5104907
work_keys_str_mv AT asterispanagiotisg predictionofthefundamentalperiodofinfilledrcframestructuresusingartificialneuralnetworks
AT tsarisathanasiosk predictionofthefundamentalperiodofinfilledrcframestructuresusingartificialneuralnetworks
AT cavaleriliborio predictionofthefundamentalperiodofinfilledrcframestructuresusingartificialneuralnetworks
AT repapisconstantinosc predictionofthefundamentalperiodofinfilledrcframestructuresusingartificialneuralnetworks
AT papalouangeliki predictionofthefundamentalperiodofinfilledrcframestructuresusingartificialneuralnetworks
AT ditrapanifabio predictionofthefundamentalperiodofinfilledrcframestructuresusingartificialneuralnetworks
AT karypidisdimitriosf predictionofthefundamentalperiodofinfilledrcframestructuresusingartificialneuralnetworks