Cargando…
Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models
Two modeling techniques [artificial neural network-genetic algorithm (ANN-GA) and stepwise regression analysis] were used to predict the effect of medium macro-nutrients on in vitro performance of pear rootstocks (OHF and Pyrodwarf). The ANN-GA described associations between investigating eight macr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809900/ https://www.ncbi.nlm.nih.gov/pubmed/27066013 http://dx.doi.org/10.3389/fpls.2016.00274 |
_version_ | 1782423693617528832 |
---|---|
author | Jamshidi, S. Yadollahi, A. Ahmadi, H. Arab, M. M. Eftekhari, M. |
author_facet | Jamshidi, S. Yadollahi, A. Ahmadi, H. Arab, M. M. Eftekhari, M. |
author_sort | Jamshidi, S. |
collection | PubMed |
description | Two modeling techniques [artificial neural network-genetic algorithm (ANN-GA) and stepwise regression analysis] were used to predict the effect of medium macro-nutrients on in vitro performance of pear rootstocks (OHF and Pyrodwarf). The ANN-GA described associations between investigating eight macronutrients (NO [Formula: see text] , NH [Formula: see text] , Ca(2+), K(+), Mg(2+), PO [Formula: see text] , SO [Formula: see text] , and Cl(−)) and explant growth parameters [proliferation rate (PR), shoot length (SL), shoot tip necrosis (STN), chlorosis (Chl), and vitrification (Vitri)]. ANN-GA revealed a substantially higher accuracy of prediction than for regression models. According to the ANN-GA results, among the input variables concentrations (mM), NH [Formula: see text] (301.7), and NO [Formula: see text] , NH [Formula: see text] (64), SO [Formula: see text] (54.1), K(+) (40.4), and NO [Formula: see text] (35.1) in OHF and Ca(2+) (23.7), NH [Formula: see text] (10.7), NO [Formula: see text] (9.1), NH [Formula: see text] (317.6), and NH [Formula: see text] (79.6) in Pyrodwarf had the highest values of VSR in data set, respectively, for PR, SL, STN, Chl, and Vitri. The ANN-GA showed that media containing (mM) 62.5 NO [Formula: see text] , 5.7 NH [Formula: see text] , 2.7 Ca(2+), 31.5 K(+), 3.3 Mg(2+), 2.6 PO [Formula: see text] , 5.6 SO [Formula: see text] , and 3.5 Cl(−) could lead to optimal PR for OHF and optimal PR for Pyrodwarf may be obtained with media containing 25.6 NO [Formula: see text] , 13.1 NH [Formula: see text] , 5.5 Ca(2+), 35.7 K(+), 1.5 Mg(2+), 2.1 PO [Formula: see text] , 3.6 SO [Formula: see text] , and 3 Cl(−). |
format | Online Article Text |
id | pubmed-4809900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48099002016-04-08 Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models Jamshidi, S. Yadollahi, A. Ahmadi, H. Arab, M. M. Eftekhari, M. Front Plant Sci Genetics Two modeling techniques [artificial neural network-genetic algorithm (ANN-GA) and stepwise regression analysis] were used to predict the effect of medium macro-nutrients on in vitro performance of pear rootstocks (OHF and Pyrodwarf). The ANN-GA described associations between investigating eight macronutrients (NO [Formula: see text] , NH [Formula: see text] , Ca(2+), K(+), Mg(2+), PO [Formula: see text] , SO [Formula: see text] , and Cl(−)) and explant growth parameters [proliferation rate (PR), shoot length (SL), shoot tip necrosis (STN), chlorosis (Chl), and vitrification (Vitri)]. ANN-GA revealed a substantially higher accuracy of prediction than for regression models. According to the ANN-GA results, among the input variables concentrations (mM), NH [Formula: see text] (301.7), and NO [Formula: see text] , NH [Formula: see text] (64), SO [Formula: see text] (54.1), K(+) (40.4), and NO [Formula: see text] (35.1) in OHF and Ca(2+) (23.7), NH [Formula: see text] (10.7), NO [Formula: see text] (9.1), NH [Formula: see text] (317.6), and NH [Formula: see text] (79.6) in Pyrodwarf had the highest values of VSR in data set, respectively, for PR, SL, STN, Chl, and Vitri. The ANN-GA showed that media containing (mM) 62.5 NO [Formula: see text] , 5.7 NH [Formula: see text] , 2.7 Ca(2+), 31.5 K(+), 3.3 Mg(2+), 2.6 PO [Formula: see text] , 5.6 SO [Formula: see text] , and 3.5 Cl(−) could lead to optimal PR for OHF and optimal PR for Pyrodwarf may be obtained with media containing 25.6 NO [Formula: see text] , 13.1 NH [Formula: see text] , 5.5 Ca(2+), 35.7 K(+), 1.5 Mg(2+), 2.1 PO [Formula: see text] , 3.6 SO [Formula: see text] , and 3 Cl(−). Frontiers Media S.A. 2016-03-29 /pmc/articles/PMC4809900/ /pubmed/27066013 http://dx.doi.org/10.3389/fpls.2016.00274 Text en Copyright © 2016 Jamshidi, Yadollahi, Ahmadi, Arab and Eftekhari. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Jamshidi, S. Yadollahi, A. Ahmadi, H. Arab, M. M. Eftekhari, M. Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models |
title | Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models |
title_full | Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models |
title_fullStr | Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models |
title_full_unstemmed | Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models |
title_short | Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models |
title_sort | predicting in vitro culture medium macro-nutrients composition for pear rootstocks using regression analysis and neural network models |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809900/ https://www.ncbi.nlm.nih.gov/pubmed/27066013 http://dx.doi.org/10.3389/fpls.2016.00274 |
work_keys_str_mv | AT jamshidis predictinginvitroculturemediummacronutrientscompositionforpearrootstocksusingregressionanalysisandneuralnetworkmodels AT yadollahia predictinginvitroculturemediummacronutrientscompositionforpearrootstocksusingregressionanalysisandneuralnetworkmodels AT ahmadih predictinginvitroculturemediummacronutrientscompositionforpearrootstocksusingregressionanalysisandneuralnetworkmodels AT arabmm predictinginvitroculturemediummacronutrientscompositionforpearrootstocksusingregressionanalysisandneuralnetworkmodels AT eftekharim predictinginvitroculturemediummacronutrientscompositionforpearrootstocksusingregressionanalysisandneuralnetworkmodels |