Cargando…
Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models
Two modeling techniques [artificial neural network-genetic algorithm (ANN-GA) and stepwise regression analysis] were used to predict the effect of medium macro-nutrients on in vitro performance of pear rootstocks (OHF and Pyrodwarf). The ANN-GA described associations between investigating eight macr...
Autores principales: | Jamshidi, S., Yadollahi, A., Ahmadi, H., Arab, M. M., Eftekhari, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809900/ https://www.ncbi.nlm.nih.gov/pubmed/27066013 http://dx.doi.org/10.3389/fpls.2016.00274 |
Ejemplares similares
-
High throughput mathematical modeling and multi-objective evolutionary algorithms for plant tissue culture media formulation: Case study of pear rootstocks
por: Jamshidi, Saeid, et al.
Publicado: (2020) -
Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation
por: Jamshidi, Saeid, et al.
Publicado: (2019) -
Modeling and Optimizing a New Culture Medium for In Vitro Rooting of G×N15 Prunus Rootstock using Artificial Neural Network-Genetic Algorithm
por: Arab, Mohammad Mehdi, et al.
Publicado: (2018) -
Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock
por: Arab, Mohammad M., et al.
Publicado: (2016) -
Mathematical Modeling and Optimizing of in Vitro Hormonal Combination for G × N15 Vegetative Rootstock Proliferation Using Artificial Neural Network-Genetic Algorithm (ANN-GA)
por: Arab, Mohammad M., et al.
Publicado: (2017)