Cargando…

Ca(2+)/H(+) exchange by acidic organelles regulates cell migration in vivo

Increasing evidence implicates Ca(2+) in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca(2+) stores are fast emerging as signaling centers. But how Ca(2+) is taken up by these organelles in metazoans and the physiological relevance for migrati...

Descripción completa

Detalles Bibliográficos
Autores principales: Melchionda, Manuela, Pittman, Jon K., Mayor, Roberto, Patel, Sandip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4810305/
https://www.ncbi.nlm.nih.gov/pubmed/27002171
http://dx.doi.org/10.1083/jcb.201510019
Descripción
Sumario:Increasing evidence implicates Ca(2+) in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca(2+) stores are fast emerging as signaling centers. But how Ca(2+) is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca(2+)/H(+) exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca(2+) signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca(2+) is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca(2+) stores in the control of Ca(2+)-dependent function.